JNucTtuir 1.1. Peanu3auus anropytma COpTUPOBKN BCTaBKaMu

void insertion_sort(item_type s[], int n) {I[
int i, j; /% counters */

for (i = 1; i < n; i++) {
=1
while ((j > 0) && (s[j] < slj - 11)) {
swap(&s[jl, &s[j - 11);
i=3-5

NnctuHr 2.1. Peanusaums anroputMa COpTUPOBKU METOAOM BbiGopa Ha si3bike C

void selection_sort(item_type s[], int n) {
int i, j; /* counters */
int min; /* dndex of minimum */

for (i = 0; i < n; i++) {
min = i;
for (j =i+ 1; j <m; j++) {
if (s[j] < s[min]) {
min = j;
}
}
swap(&s[i], &s[min]);

JIncTUHr 2.2. BHyTpeHHMe LMKIbl anroputMma COpTUPOBKM BCTaBKaMu Ha A3bike C

for (i = 1; i < n; i++) {
j=1;
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &s[j - 11);
j=3%5
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NucTtnHr 2.3. Peanusauus anropytma nomMcka CTpoKu B TeKCTe

int findmatch(char #*p, char *t) {

int i, j; /* counters */

int plen, tlen; /* string lengths */
plen = strlen(p);

tlen = strlen(t);

for (i = 0; i <= (tlen-plen); i =i + 1) {

j=0;

while ((j < plem) && (t[i + j1 == p[j1)) {
j=J+1

}

if (j == plen) {
return(i); /* location of the first match */
¥
+

return(-1); /* there is no match */

JIucTrHr 2.4. YMHOXeHHne MmaTtpuy,

for (i = 1; i <= a->rows; i++) {
for (j = 1; j <= b->columns; j++) {
c—>m[i] [j1 = 0;
for (k = 1; k <= b->rows; k++) {
c->m[i] [j] += a->m[i] [k] * b->m[k] [j1;
T

Nnctur 3.1. O6bABNEHNE CTPYKTYpPbl CBA3HOrO CNucKa

typedef struct list {

item_type item; /* data item */
struct list *next; /* point to successor */
} list;

JNnctuHr 3.2. PekypcMBHbIN NOUCK 3N1eMeHTa B CBA3SHOM crniucke

list #*search_list(list *1, item_type x) {
if (1 == NULL) {
return(NULL) ;
Iy

if (1->item == x) {
return(l);
} else {
return(search_list(l->next, x));

}
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INucTturr 3.3. BctaBka anemMeHTa B oAHOHaNpaBneHHbIA CBA3HbIA CMUCOK

void insert_list(list #**1, item_type x) {
list #*p; /* temporary pointer */

p = malloc(sizeof (1list));
p->item = x;

p->next = *1;

*1 = p;

Nuctuir 3.4. Mouck ykasatensi Ha aNeMeHT, NpeALwecTBYOLWWIA yaansaemomy

list *item_ahead(list *1, list *x) {
if ((1 == NULL) || (l1->next == NULL)) {
return (NULL) ;
}

if ((1->next) == x) {
return(l);
} else {
return(item_ahead(1->next, x));

¥

JluctuHr 3.5. YoaneHume aneMeHTa CBA3HOro cnucka

void delete_list(list **1, list #*x) {

list #*p; /* item pointer */
list #pred; /* predecessor pointer */
p = *1;

pred = item_ahead(*1, *x);

if (pred == NULL) { /* splice out of list */
*1 = p->next;

} else {
pred->next = (*x)->next;

+

free(*x); /* free memory used by node */

Nuctur 3.6. O6bABNEHNe TMNa ANA CTPYKTYpPbI AepeBa

typedef struct tree {

item_type item; /¥ data item */

struct tree *parent; /* pointer to parent */
struct tree *left; /* pointer to left child */
struct tree *right; /* pointer to right child */

} tree;
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NucTtnir 3.7. AnropwrM PeKypCUBHOIO NOMCKa Npou3BOJyiIbHOro 3yieMeHTa B ABOUYHOM gepeBe

tree *search_tree(tree x1, item_type x) {
if (1 == NULL) {
return (NULL) ;
T

if (1->item == x) {
return(l);

}

if (x < 1->item) {
return(search_tree(l->left, x));
} else {
return(search_tree(l->right, x));

I

NucTtur 3.8. Monck HauMmeHbLLEro afieMeHTa B ABOMYHOM fepeBe

tree *find_minimum(tree *t) {
tree *min; /* pointer to minimum */

if (¢ == NULL) {
return (NULL) ;
}

min = t;

while (min->left != NULL) {
min = min->left;

+

return (min) ;

Nuctur 3.9. PekypcUBHbIN anroputM CUMMETPUYHOro o6xoaa ABOMYHOIO AepeBa

void traverse_tree(tree *1) {
if (1 !'= NULL) {
traverse_tree(l->left);
process_item(l->item);
traverse_tree(l->right);
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Iuctunr 3.10. BectaBka y3na B ABOMYHOE fiepeBO Noucka

void insert_tree(tree **1, item_type X, tree *parent) {
tree *p; /* temporary pointer */

if (*1 == NULL) {
p = malloc(sizeof(tree));
p->item = x;
p->left = p->right = NULL;
p->parent = parent;
*]1 = P
return;

}

if (x < (*¥1)->item) {
insert_tree(&((x1)->left), x, *1);
} else {
insert_tree(&((*1)->right), x, *1);
H

Kop 4.1. ®PyHKUMA COPTUPOBKMN gsort

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (xcompare) (const void #, const void *));

NucTtunr 4.1. Peanusauusa ¢pyHKLUMN cpaBHEHUA

int intcompare(int *i, int *j)

{
if (*i > *j) return (1);
if (*i < *j) return (-1);
return (0);

}

‘ Kop 4.2. Bbi3oB thyHKLUN COPTUPOBKMU

gsort(a, n, sizeof(int), intcompare);

‘ Kop 4.3. CTpykTypa AaHHbIX nupaMuabl

typedef struct {

item_type q[PQ_SIZE+1]; /% body of queue */

int n; /* number of queue elements */
} priority_queue;
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INuctuir 4.2. Kog ansa pa6otbl ¢ nupamnaon

int pgq_parent(int n) {
if (o == 1) {
return(-1);
}
return((int) n/2); /¥ implicitly take floor(n/2) */

int pq_young_child(int n) {
return(2 * n);

}

INuctuir 4.3. BctaBka anemeHTa B nupamugy

void pq_insert(priority_queue *q, item_type x) {
if (g->n >= PQ_SIZE) {
printf("Warning: priority queue overflow! \n");
} else {
g->n = (g->n) + 1;
g->qlg->n] = x;
bubble_up(q, g->n);

void bubble_up(priority_queue *q, int p) {
if (pg_parent(p) == -1) {
return; /* at root of heap, no parent */

¥

if (q->qlpq_parent(p)] > q->qlp]) {
pq_swap(q, p, pq_parent(p));
bubble_up(q, pg_parent(p));

Nuctuir 4.4. CosgaHme nMpamuabl NOBTOPAKOLWMMUCA BCTaBKaMmn

void pg_init(priority_queue *q) {
q->n = 0;
}

void make_heap(priority_queue *q, item_type s[], int n) {
int i; /* counter */

pa-init(q);

for (i = 0; i < m; i++) {
pq-insert(q, s[il);

h
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JlucTunHr 4.5. YpaneHne HauMeHbLUero afnieMmeHTa nunpamuabl

item_type extract_min(priority_queue *q) {
int min = -1; /* minimum value */

if (g-—>n <= 0) {

printf ("Warning: empty priority queue.\n");
} else {

min = g->q[1];

q->q[1] = gq->qlq->nl;
gq->n = g->n - 1;
bubble_down(q, 1);

T

return(min) ;

void bubble_down(priority_queue *q, int p) {
int c; /* child index */
int i; /* counter */
int min_index; /* index of lightest child */

¢ = pq_young_child(p);
min_index = p;

for (i = 0; i <= 1; i++) {

if ((c + i) <= gq->n) {
if (g->q[min_index] > g->qlc + i]) {
min_index = ¢ + 1i;

}
}
if (min_index '= p) {

pq_swap(q, p, min_index);
bubble_down(q, min_index);

NnctuHr 4.6. Anroput™m nupamuaanbHOW COPTUPOBKMU

void heapsort_(item_type s[], int n) {
int i; /* counters */
priority_queue q; /* heap for heapsort */

make_heap(&q, s, n);
for (i = 0; i < n; i++) {

s[i] = extract_min(&q);

}
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NnctuHr 4.7. Anroputm 6bICTPOro co3aaHusi nMpamMmuabl

void make_heap_fast(priority_queue *q, item_type s[], int n) {

int i; /* counter */
q->n = n;
for (i = 0; i < mn; i++) {

q->qli + 1] = s[il;

}

for (i = g—>n/2; i >=1; i--) {
bubble_down(q, 1);
}

INnctuHr 4.8. CpaBHeHue k-ro anemMeHTa ¢ YNCNOM X

int heap_compare(priority_queue *q, int i, int count, int x) {
if ((count <= 0) || (i > g->n)) {
return(count) ;

}

if (g->q[i] < x) {
count = heap_compare(q, pq_young child(i), count-1, x);
count = heap_compare(q, pq_young_child(i)+1, count, x);

}

return(count);

INnctur 4.9. CoptpoBKa BCTaBKaMm

for (i =1; i < m; i++) {
=i
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &s[j - 11);
=71

NucTtunr 4.10. Kop peanusauuu anropytMa COpTUPOBKM CINUSIHUEM

void merge_sort(item_type s[l, int low, int high) {
int middle; /* index of middle element */

if (low < high) {
middle = (low + high) / 2;
merge_sort(s, low, middle);
merge_sort(s, middle + 1, high);

merge(s, low, middle, high);
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INnctuir 4.11. NMpouepypa cnUAHUA MaccMBOB

void merge(item_type s[], int low, int middle, int high) {
int i; /% counter */
queue bufferi, buffer2; /+ buffers to hold elements for merging */

init_queue (&bufferi);
init_queue(&buffer2);

for (i = low; i <= middle; i++) enqueue(&bufferi, s[i]);
for (i = middle + 1; i <= high; i++) enqueue(&buffer2, s[i]);
i= low;

while (! (empty_queue(&bufferl) || empty_queue(&buffer2))) {
if (headq(&bufferl) <= headq(&buffer2)) {
s[i++] = dequeue(&bufferil);
} else {
s[i++] = dequeue (¥buffer2);
}
Iy

while (!empty_queue(&bufferi)) {
s[i++] = dequeue(&bufferi);
T

while (!empty_queue(&buffer2)) {
s[i++] = dequeue(&buffer2);
T

Nuctnir 4.12. Kog anroputma 6bICTPOMA COPTUPOBKMU

void quicksort(item_type s[], int 1, int h) {
int p; /* index of partition */

if (L <h) {
p = partition(s, 1, h);
quicksort(s, 1, p - 1);
quicksort(s, p + 1, h);
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Nnctuir 4.13. MNMpouepypa pa3dbreHnss MaccuBa Ha YacTn

int partition(item_type s[], int 1, int h) {
int i; /% counter */
int p; /* pivot element index */
int firsthigh; /* divider position for pivot element */

p = h; /* select last element as pivot */
firsthigh = 1;
for (i = 1; i < h; i++) {
if (s[il < =s[pD) {
swap(&s[i], &s[firsthigh]);
firsthigh++;
}
¥
swap(&s[p]l, &s[firsthigh]);

return(firsthigh) ;

NucTturr 5.1. Peanusauus anropytma 4BOMYHOrO Noucka

int binary_search(item_type s[], item_type key, int low, int high) {
int middle; /* index of middle element */

if (low > high) {
return (-1); /* key not found */
}

middle = (low + high) / 2;

if (s[middle] == key) {
return(middle);

)

if (s[middle] > key) {

return(binary_search(s, key, low, middle - 1));
} else {

return(binary_search(s, key, middle + 1, high));
}

Kop 5.1. N'paHuubl uuknoB

for (i = 0; i < n+m-1; i++) {

for (j = max(0,i-(n-1)); j <= min(m-1,1); j++) {
c[i] = c[i] + a[j]l * b[i-j];

}
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Nnctur 7.1. Peanusauus rpadoB NnocpeacTBOM CMIMCKOB CMEXKHOCTHU

#define MAXV 100 /% mazimum number of vertices */

typedef struct edgenode {

int y; /* adjacency info */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in Llist */

} edgenocde;

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
int directed;
} graph;

/¥
/¥
/¥
/*
/¥

adjacency info */

outdegree of each wvertex */
number of wvertices in the graph */
number of edges in the graph */

is the graph directed? */

JlucTuHr 7.2. ®opmar rpacpa

void initialize_graph(graph *g, bool directed) {

int 1i; /* counter */

g->nvertices = 0;
g->nedges = 0;
g->directed = directed;

for (i = 1; i <= MAXV; i++) {

g->degree[i] = 0;
}

for (i = 1; i <= MAXV; i++) {

g->edges[i] = NULL;
}

NucTtuHr 7.3. CuntbiBaHme rpada

void read_graph(graph *g, bool directed) {

int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (z,y) */

initialize_graph(g, directed);

scanf ("}d %d", &(g->nvertices), &m);

for (i = 1; i <= m; i++) {
scanf ("}d %d", &x, &y);

insert_edge(g, %, y, directed);
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INucTtuHr 7.4. BctaBka pebpa

void insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */
p = malloc(sizeof (edgenode)) ; /* allocate edgenode storage */

p—>weight = 0;

Py = Vs
p->next = g->edges[x];

g—>edges[x] = p; /* insert at head of list */
g->degree [x] ++;

if (!directed) {

insert_edge(g, y, x, true);
} else {

g->nedges++;

}

INucTtuHr 7.5. BoiBopg rpacha Ha akpaH

void print_graph(graph *g) {

int i; /* counter */
edgenode *p; /* temporary pointer */

for (i = 1; i <= g->nvertices; i++) {
printf ("%d: ", i);
P = g>edges[il];
while (p != NULL) {
printf (" %d", p->y);
P = p~—>next;
}
printf ("\n");

Koa 7.1. ByneBbl nepemeHHble ANsA XxpaHeHUs nHOpMaLUmM O KaXXaowu BepLunHe rpadcda

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent [MAXV+1]; /* discovery relation */
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JluctrHr 7.8. UHMumanusaumsa BepLIMH

void initialize_search(graph *g) {
int i; /* counter */

time = 0O;

for (i = 0; i <= g->nvertices; i++) {
processed[i] = false;
discovered[i] = false;
parent[i] = -1;

Nuctunr 7.9. O6xopn rpacda B LWNPUHY

void bfs(graph *g, int start) {

queue q; /* queue of wvertices to visit */
int v; /* current vertex */

int y; /* successor wvertex */

edgenode *p; /* temporary pointer */

init_queue(&q);
enqueue (&q, start);
discovered[start] = true;

while (!empty_queue(&q)) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
P = g->edges([v];
while (p != NULL) {
Yy = P2y
if ((!processed[y]) || g->directed) {
process_edge(v, y);
}
if (ldiscovered[y]) {
enqueue (&q,y) ;
discovered[y] = true;
parent[y] = v;

}
P = p—>next;
}

process_vertex_late(v);
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JNnctunr 7.10. ®yHKUMA process_vertex late ()

void process_vertex_late(int v) {

}

Nnctuir 7.11. ®dyHkumum process_vertex_early() u process_edge()

void process_vertex_early(int v) {
printf ("processed vertex %d\n", v);

}

void process_edge(int x, int y) {
printf ("processed edge (%d,%d)\n", x, y);
¥

Jlnctunr 7.12. ®yHKumA process_edge () AnA noacyera KonvyecTsa pebep

void process_edge(int x, int y) {
nedges = nedges + 1;

}

Nuctnhr 7.13. U3MeHeHne HanpaBneHUs NyTU NOCPeACTBOM peKypcuu

void find_path(int start, int end, int parents[]) {

if ((start == end) || (end == -1)) {
printf ("\njd", start);
} else {

find_path(start, parents[end], parents);
printf (" %d", end);
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INnctuir 7.14. NMpouepypa noncka KOMNOHEHTOB CBA3HOCTU

void connected_components(graph *g) {

int c; /* component number */
int 1i; /* counter */

initialize_search(g);

c = 0;
for (1 = 1; i <= g->nvertices; i++) {
if (!discovered[i]) {
c=c+ 1;
printf ("Component %d:", c);
bfs(g, 1i);
printf("\n");

}
}
T
void process_vertex_early(int v) { /* vertex to process */
printf (" %d", v);
}

void process_edge(int x, int y) {

}
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INuctunr 7.15. Mpouepypa packpacku rpacdoB ABYMS LiBeTamMKn

void twocolor(graph =g) {
int 1; /¥ counter %/

for (i = 1; i <= (g->nvertices); i++) {
color[i] = UNCOLORED;
1

bipartite = true;
initialize_search(g);

for (i = 1; i <= (g->nvertices); i++) {
if (ldiscovered[i]) {
color[i] = WHITE;
bis(g, 1i);

void process_edge(int x, int y) {
if (color[x] == colorlyl) {
bipartite = false;
printf ("Warning: not bipartite, due to (%d,%d)\n", x, y);
1

color[y] = complement(color[x]);

int complement(int color) {
if (color == WHITE) {
return (BLACK) ;
1
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Iuctunr 7.17. O6xop rpaca B rnyouHy

void dfs(graph *g, int v) {
edgenode *p; /* temporary pointer ¥/
int y; /* successor vertex */

if (finished) {

return; /* allow for search termination */
}
discovered[v] = true;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);

p = g—>edges[v];
while (p != NULL) {
¥y =Py
if (!discovered[yl) {
parent[y] = v;
process_edge(v, y);
dfs(g, y);
} else if (((!processed[yl) && (paremt([v] != y)) || (g->directed)) {
process_edge(v, y);

}

if (finished) {
return;

}

P = p—>next;

}

process_vertex_late(v);
time = time + 1;
exit_time[v] = time;
processed[v] = true;

JInctuHr 7.18. NMouck unkna

void process_edge(int x, int y) {
if (parent[y] !'= x) { /* found back edge! */
printf ("Cycle from %d to ¥d:", y, x);
find_path(y, x, parent);
finished = true;

NucTturHr 7.19. UHMumanmsaumsa maccmBa [OCTMXKUMbIX NpeALecTBEHHUKOB

int reachable_ancestor[MAXV+1]; /* earliest reachable ancestor of v %/
int tree_out_degree[MAXV+1]; /% DFS tree outdegree of v +/

void process_vertex_early(int v) {
reachable_ancestor[v] = v;

¥
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JNucTtuHr 7.20. OnpeneneHme Bo3pacTa nNpepLecTBEHHUKOB

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == TREE) {
tree_out_degree[x] = tree_out_degree[x] + 1;
}

if ((class == BACK) && (parent([x] != y)) {
if (entry_time[y] < entry_time[reachable_ancestor[x]]) {
reachable_ancestor[x] = y;

}

NuctuHr 7.21. OnpegeneHne Tuna wapHupa

void process_vertex_late(int v) {

bool root; /* is parent[v] the root of the DFS tree? %/
int time_v; /* earliest reachable time for v */

int time_parent; /% earliest reachable time for parent[u] */
if (parent[v] == -1) { /¥ test if v 1is the root */

if (tree_out_degreel[v] > 1) {
printf ("root articulation vertex: %d \n",v);
}
return;
}

root = (parent[parent[v]] == -1); /* is parent[v] the root? ¥/
if ('root) {

if (reachable_ancestor[v] == parent[v]) {
printf("parent articulation vertex: %d \n", parent[vl);

}
if (reachable_ancestor([v] == v) {
printf ("bridge articulation vertex: %d \n",parent[v]);
if (tree_out_degreelv] > 0) { /* 15 v is not a leaf? */
printf("bridge articulation vertex: %d \n", v);
}
I

}

time_v = entry_time[reachable_ancestor[v]];
time_parent = entry_time[reachable_ancestor [parent[v]]];

if (time_v < time_parent) {
reachable_ancestor [parent [v]] = reachable_ancestor([v];

}
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INucTtuHr 7.22. OnpegeneHne Tuna pebpa

int edge_classification(int x, int y) {
if (parent[y] == x) {
return(TREE) ;
}

if (discovered[y] && !processed[yl) {
return(BACK) ;
}

if (processed[y] && (entry_timel[yl>entry_time[x])) {
return (FORWARD) ;
}

if (processed[y] && (entry_timel[yl<entry_timel[x])) {
return(CROSS) ;

¥

printf ("Warning: self loop (%d,%d)\n", x, y);

return -1;

NucTturHr 7.23. Tononornyeckass COpTUpPoBKa

void process_vertex_late(int v) {
push(&sorted, v);
}

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == BACK) {
printf ("Warning: directed cycle found, not a DAG\n");
}

void topsort(graph *g) {
int i; /¥ counter */

init_stack(&sorted);

for (i = 1; i <= g->nvertices; i++) {
if (ldiscovered[i]) {
dfs(g, i);
}

¥
print_stack(&sorted); /* report topological order */
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JNucTturHr 7.24. TpaHcnoHMpoBaHue rpaca

graph *transpose(graph *g) {
graph *gt; /* transpose of graph g */
int x; /* counter */
edgenode *p; /¥ temporary pointer */

gt = (graph *) malloc(sizeof (graph));
initialize_graph(gt, true); /* initialize directed graph */
gt->nvertices = g->nvertices;

for (x = 1; x <= g->nvertices; x++) {
p = g->edges[x];
while (p != NULL) {
insert_edge(gt, p->y, x, true);
P = p—>next;

}

return(gt) ;

JIucTrHr 7.25. Anroputm pasnoxeHus rpada Ha CUINbHO CBA3HbIE KOMMOHEHTbI

void strong_components(graph *g) {

graph *gt; /* transpose of graph g */
int i; /* counter */
int v; /* verter in component */

init_stack(&dfslorder);
initialize_search(g);
for (i = 1; i <= (g->nvertices); i++) {
if ('discovered[i]) {
dfs(g, i);
*
}

gt = transpose(g);
initialize_search(gt);

components_found = O;
while (!empty_stack(Zdfslorder)) {
v = pop(&dfslorder);
if (!'discovered[v]) {
components_found ++;
printf ("Component %d:", components_found);
dfs2(gt, v);
printf ("\n");
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Kopn 7.2. YueT pecypcoB B 6€CKOHTYPHbIX OPUEHTUPOBaHHbIX rpadax

void process_vertex_late(int v) {

push(&dfslorder,v);
}

Kop 7.3. OnpeaeneHne CUNIbHO CBAABHOIO KOMNOHEHTa B TPAaHCMOHMPOBaHHOM rpade

void process_vertex_early2(int v) {

printf (" %d", v);
T

INuctuHr 8.1. OnpepeneHne CTPyKTypbl CNMCKA CMEXHOCTHU

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
int directed;
} graph;

/* adjacency info */

/* outdegree of each vertex */

/* number of vertices in the graph */
/* number of edges 4n the graph */
/* is the graph directed? */

INuctuir 8.2. Ctpyktypa nepemeHHon edgenode

typedef struct edgenode {
int y;
int weight;
struct edgenode *next;
} edgenode;

/* adjacency info */
/* edge weight, if any */
/* next edge in list */
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INucTtunr 8.4. Peanusauusa anroputma lNMpuma

int prim(graph *g, int start) {

int

i; /* counter */

edgenode *p; /* temporary pointer ¥/
bool intree[MAXV+1]; /¥ is the vertex in the tree yet? #/

int
int
int
int
int

for

}

distance [MAXV+1]; /* cost of adding to tree */

v; /* current vertex to process */

Ww; /* candidate next vertex */

dist; /* cheapest cost to enlarge tree */
weight = 0; /* tree weight */

(i = 1; i <= g->nvertices; i++) {

intree[i] = false;

distance[i] = MAXINT;

parent[i] = -1;

distance[start] = 0;

v =

start;

while (!intreelv]) {

}

intreel[v] = true;
if (v != start) {
printf("edge (%d,%d) in tree \n",parent([v],v);
weight = weight + dist;
}
p = g->edges[v];
while (p != NULL) {
v = poy;
if ((distancelw] > p->weight) &% (!intreelw])) {
distance[w] = p->weight;
parent[w] = v;

}
P = p->next;

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if (('intree([i]) && (dist > distance[i])) {
dist = distancel[i];
v =1i;

return(weight);
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INuctunr 8.6. Peanusauusa anroputma Kpyckana

int kruskal(graph *g) {

int i; /% counter */

union_find s; /* union-find data structure */
edge_pair e[MAXV+1]; /* array of edges data structure */

int weight=0; /* cost of the minimum spanning tree */

union_find_init(%s, g->nvertices);

to_edge_array(g, e);
gsort(&e,g->nedges, sizeof (edge_pair), &weight_compare);

for (i = 0; 1 < (g->nedges); i++) {
if (!same_component(&s, e[i]l.x, e[i]l.y)) {
printf("edge (%d,%d) in MST\n", e[i].x, e[il.y);
weight = weight + e[i].weight;
union_sets(&s, el[il.x, e[il.y);

}

return(weight) ;

Jlnctunr 8.7. Onpegenenne CTPYKTYpbl AaHHbIX union find

typedef struct {

int p[SET_SIZE+1]; /* parent element */
int size[SET_SIZE+1]; /* number of elements in subtree i */
int n; /* number of elements in set */

} union_find;
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INnctunr 8.8. Peanusaums onepauui union U £ind

void union_find_init(union_find #s, int n) {
int 1i; /¥ counter %/

for (1 = 1; 1 <= n; i++) {
s->p[i] = 1;
g->size[i] = 1;

§->N = n;

int find(union_find #*s, int x) {
if (s->plx] == %) {
return(x);

}
return(find(s, s->plx1));

void union_sets(union_find ==z, int =1, int =2) {

int ri, r2; /% roots of sets #/
rl = find(s, s1);
r2 = find(s, s2);

if (ril == r2) {
return; /# already in same set #/

}

if (s-»sizel[rl] »= s->sizel[r2]) {
s->sizelri] = s->sizel[rl] + s->sizelr2];
s—>plr2] = ri;

} else {
s->sizel[r2] = s->sizelrl] + s->sizelr2];
s->plri] = r2;

}

bool same_component(union_find #*s, int =1, int s2) {
return (find(s, sl1) == find(s, 82));

}
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NucTturr 8.10. Peanusauua anroputma [eMKCTpbl

int dijkstra(graph *g, int start) {
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertez in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertex to process */

int w; /% candidate next vertex */

int dist; /* cheapest cost to enlarge tree */
int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {
intree[i] = false;
distance[i] = MAXINT;
parent [i] = -1;

}

distance[start] = 0;
v = start;
while (lintree[v]) {
intree[v] = true;
if (v !'= start) {
printf("edge (%d,%d) in tree \n",parent[v],v);
weight = weight + dist;
¥
p = g>edges[v];
while (p != NULL) {

W = pPY;

if (distancelw] > (distancelv]+p->weight)) { /* CHANGED +/
distance[w] = distance[v]+p->weight; /* CHANGED */
parent[w] = v; /* CHANGED */

}

P = p—>next;

}

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if ((!intree[i]) && (dist > distance[i])) {
dist = distancel[i];
v = 1i;

}

return(weight) ;

Nucturr 8.11. OnpegeneHne TMna MaTpyuubl CMEXHOCTHU

typedef struct {
int weight [MAXV+1] [MAXV+1]; /¥ adjacency/weight info */

int nvertices; /* number of wertices in graph */

} adjacency_matrix;
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INnctur 8.12. Peanusauus anroputma ®nonpga — Yopuwenna

void floyd(adjacency_matrix *g) {

int i, j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through wvertex k */

for (k = 1; k <= g->nvertices; k++) {
for (i = 1; i <= g->nvertices; i++) {
for (j = 1; j <= g->nvertices; j++) {
through_k = g->weight [i] [k]+g->weight [k][j];
if (through_k < g->weight[i] [j]) {
g->weight[i] [j] = through_k;
}

NuctuHr 8.13. MoaudmumpoBaHHas CTpyKkTypa pebpa

typedef struct {

int v; /* meighboring vertex */
int capacity; /* capacity of edge */
int flow; /* flow through edge */
int residual; /* residual capacity of edge */
struct edgenode *next; /* next edge in list */
} edgenode;

TNnctur 8.14. NMpouepypa noncka onTMManbHOro NoToka

void netflow(flow_graph *g, int source, int sink) {
int volume; /* weight of the augmenting path */

add_residual_edges(g);

initialize_search(g);
bfs(g, source);

volume = path_volume(g, source, sink);

while (volume > 0) {
augment_path(g, source, sink, volume);
initialize_search(g);
bfs(g, source);
volume = path_volume(g, source, sink);
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INnctuir 8.15. MNMpoueaypa Ans pasnMyeHUs HacbIWEHHbIX U HeHacbILWeHHbIX pebep

bool valid_edge(edgenode *e) {
return (e->residual > 0);

}

Iucturr 8.16. lo6aBneHve yBennunsarwLmx nyTen B NOToK

int path_volume(flow_graph *g, int start, int emnd) {

edgenode *e; /* edge in question */
if (parent[end] == -1) {

return(0);
¥

e = find_edge(g, parent[end], end);

if (start == parent[end]) {
return(e->residual);
} else {
return(min(path_volume(g, start, parent[end]), e->residual));

}

NucTtudr 8.17. Mogudukauus pedbep

void augment_path(flow_graph *g, int start, int end, int volume) {
edgenode *e; /* edge in question */

if (start == end) {
return;

}
e = find_edge(g, parent[end], end);
e->flow += volume;

e->residual -= volume;

e = find_edge(g, end, parent[end]);
e->residual += volume;

augment_path(g, start, parent[end], volume);
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INucTtuHr 9.2. Peanusauusa anroputma nepebopa c Bo3BpaTtom

void backtrack(int a[], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for nezt position */
int nc; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a, k, input)) {
process_solution(a, k,input);
} else {
k=k+ 1;
construct_candidates(a, k, input, ¢, &nc);
for (i = 0; i < nc; i++) {
alk] = c[il;
make_move(a, k, input);
backtrack(a, k, input);
unmake_move(a, k, input);

if (finished) {
return; /* terminate early */

}

Nuctunr 9.3. Peanusauums 6a3oBbIX npoueayp npoueaypbl backtrack ()

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void construct_candidates(int a[], int k, int n, int c[], int *nc) {
c[0] = true;
c[1] = false;

*nc = 2;

¥

void process_solution(int a[], int k, int input) {
int i; /* counter */

printf ("{");
for (i =1; i <= k; i++) {
if (ali] == true) {
printf (" %d", i);
}
}

printf(" F\n");
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JNucTturr 9.4. Bbi3oB npouenypbl backtrack () Ansi reHEPUPOBaHMA NOAMHOXECTB

void generate_subsets(int n) {
int a[NMAX]; /% solution vector */

backtrack(a, 0, n);

INuctuir 9.5. Mpoueaypa construct candidates () ANA reHepMpoBaHUsA BCeX NepecTaHOBOK

void comnstruct_candidates(int a[], int k, int n, int c[], int *nc) {
int i; /% counter */
bool in_perm[NMAX] ; /* what is now in the permutation? */

for (i = 1; i < NMAX; i++) {
in_perm[i] = false;

}

for (i =1; i < k; i++) {
in_perm[a[il] = true;

}

*nc = 0;
for (1 = 1; i <= n; i++) {
if (lin_perm[i]) {
c[ *nc ] = i;
¥nc = *nc + 1;

NucTtunr 9.6. NMpoueaypbl reHepupoBaHUs NepecTaHOBOK

void process_solution(int a[], int k, int input) {
int i; /* counter */

for (i = 1; i <= k; i++) {
printf (" %d", alil);

}

printf ("\n");

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void generate_permutations(int n) {
int a[NMAX]; /* solution wvector */

backtrack(a, 0, n);
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Nnctuur 9.7. CosaaHne CTPYKTYpbI ANA XpaHEHUs BXOAHbIX AaHHbIX
Ana npoueaypbl backtrack

typedef struct {

int s; /* source vertexr */
int t; /* destination vertexr */
graph g; /* graph to find paths in */

} paths_data;

Jlnctunr 9.8. NMpoueaypa construct candidates () AnNA nepeuyncreHuns Bcex nyTen B rpacge

void construct_candidates(int a[l, int k, paths_data *g, int c[],
int *nc) {

int i; /* counters */

bool in_sol [NMAX+1]; /* what's already in the solution? */
edgenode *p; /% temporary pointer */

int last; /* last vertex on current path */

for (i = 1; i <= g->g.nvertices; i++) {
in_sol[i] = false;

for (i = 0; i < k; i++) {
in_sol([a[il] = true;

}

if (k == 1) {
cl0] = g->s; /* always start from vertex s */
*nc = 1;

} else {
*nc = 0;

last = alk-1];
P = g->g.edges[last];
while (p !'= NULL) {
if (lin_sol[ p->y 1) {
cl*nc] = p->y;
*nc= #nc + 1,

}
P = p->next;

JucTtunr 9.9. Mpoueaypbl ANs onpeaeneHns peLueHns U ero o6paboTku

int is_a_solution(int a[], int k, paths_data *g) {
return (a[k] == g->t);
}
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Nnctuir 9.10. MNMpouepypa Ans noacyeTa KONUMYecTBa OO6HapYKeHHbIX NyTen

void process_solution(int a[], int k, paths_data *input) {
int i; /* counter */

solution_count ++;

printf ("{");

for (i = 1; i <= k; i++) {
printf (" %d",alil);

}

printf (" F\n");

Jluctunr 9.11. OnpepeneHne OCHOBHbIX CTPYKTYP AaHHbIX

#define DIMENSION 9 /* 9%9 board */
#define NCELLS DIMENSION*DIMENSION  /* 81 cells in 9-by-9-board */
#define MAXCANDIDATES  DIMENSION+1 /* maz digit choices per cell */

bool finished = false;
typedef struct {
int x, y; /* row and column coordinates of square */

} point;

typedef struct {

int m[DIMENSION+1] [DIMENSION+1]; /* board contents */

int freecount; /* open square count */

point move [NCELLS+1]; /* which cells have we filled? */
} boardtype;

JNucTunHr 9.12. FreHepupoBaHMe KaHAWAATOB Ha 3anofIHeHUe KNeTouKu

void construct_candidates(int a[], int k, boardtype *board, int c[],
int #nc) {
int i; /¥ counter */
bool possible[DIMENSION+1]; /* which digits fit in this square */

next_square (& (board->move[k]), board); /* pick square to fill next */
*nc = 0;

if ((board->movel[k].x < 0) && (board->movel[k].y < 0)) {
return; /* error condition, no moves possible */

}

possible_values(board->move[k], board, possible);
for (i = 1; i <= DIMENSION; i++) {
if (possiblel[il) {
c[*nc] = i;
*nc = *nc + 1;
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Jlnctunr 9.13. Mpoueaypbl make move M unmake move

void make_move(int a[], int k, boardtype *board) {
f£ill_square(board->move[k], al[k], board);
}

void unmake_move(int a[], int k, boardtype *board) {
free_square(board->move [k], board);

}

TNuctuur 9.14. NMpoueaypa oTcnexXnBaHUs NyCcTbiX KNeTo4Yek

bool is_a_solution(int a[], int k, boardtype *board) {
steps = steps + 1; /* count steps for results table */

return (board->freecount == 0);

TNuctuhr 9.15. 3aBeplieHne novcka u o6paboTka peweHus

void process_solution(int a[], int k, boardtype #board) {
finished = true;
printf("process solutioni\n");
print_board(board);

Iucturr 9.16. MNonck kaHAMAATOB KpaT4allLero NyTM METOAOM «Iy4LIMA-NepBbIA»

void branch_and_bound (tsp_solution *s, tsp_instance *t) {

int c[MAXCANDIDATES]; /* candidates for mext position */
int nc; /* next position candidate count */
int i; /* counter */

first_solution(&best_solution,t);

best_cost = solution_cost(&best_solution, t);
initialize_solution(s,t);
extend_solution(s,t,1);

pa-init(&q);

pq_insert(&q,s);

while (top_pq(&q).cost < best_cost) {
*s = extract_min(&q);
if (is_a_solution(s, s->n, t)) {
process_solution(s, s->n, t);

}
else {
construct_candidates(s, (s->n)+1, t, c, &nc);
for (i=0; i<mnc; i++) {
extend_solution(s,t,c[i]);
pq_insert (&q,s);
contract_solution(s,t);
}
}
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TNnctuur 9.17. Mpouepypsbl extend_solution u contract_solution

void extend_solution(tsp_solution *s, tsp_instance *t, int v) {
s->n++;
s—>pls->n] = v;
s->cost = partial_solution_lb(s,t);

}

void contract_solution(tsp_solution *s, tsp_instance *t) {
s->n—-—;
s->cost = partial_solution_lb(s,t);

NnctuHr 9.18. BbluncneHne CTOUMOCTM peLleHust

double partial_solution_cost (tsp_solution *s, tsp_instance *t) {
int i; /* counter */
double cost = 0.0;  /* cost of solution */

for (i = 1; i < (s->n); i++) {
cost = cost + distance(s, i, 1 + 1, t);

}

return(cost) ;

}

double partial_solution_lb(tsp_solution *s, tsp_instance *t) {
return(partial_solution_cost(s,t) + (t->n - s->n + 1) * minlb);

}

NnctuHr 10.1. PekypcuBHas pyHKUUA ANA BblYMUCIIeHUsA N-ro yucna ®PuboHavum

long fib_r(int n) {
if (n == 0) {
return (0) ;

}
if (n == 1) {
return(1l);

}

return(fib_r(n-1) + fib_r(n-2));
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NucTtrrr 10.2. BeluncneHme yncen PmboHa4y4m ¢ UCNONb30BaHMEM K3LWMPOBaHUA

#define MAXN 92 /* largest n for which F(n) fits in a long */
#define UNKNOWN -1 /* contents denote an empty cell */
long f[MAXN+1]; /* array for caching fib values */

long fib_c(int n) {
if (f[n] == UNKNOWN) {

f[n] = fib_c(n-1) + fib_c(n-2);

}

return(f[n]);

long fib_c_driver(int n) {

int 1i; /* counter */
f£[0] = 0;

f[1] = 1;

for (i

£[i] = UNKNOWN;

}

return(fib_c(n)) ;

2; i <= mn; i++) {

NuctuHr 10.3. BbluMcneHus ynucna PnboHavyum 6e3 pekypcum

long fib_dp(int n) {
int i;
long f[MAXN+1];

/* counter */
/% array for caching values */

£[0] = 0;

£[1] = 1;

for (i = 2; i <= n; i++) {
£[i] = £[i-1] + £[i-2];

}

return(f[n]);
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Nnctuur 10.4. OkoH4YaTenbHasA Bepcusi npoueaypbl BblYMcneHus yncen ®mboHavum

long fib_ultimate(int n)

{

int i; /* counter */
long back2=0, backl=1; /#* last two wvalues of fln] */
long next; /* placeholder for sum */

if (n == 0) return (0);

for (i=2; i<n; i++) {
next = backl+back?2;
back2 = backl;
backl = next;

}

return(backl+back?) ;

NuctnHr 10.5. BbluMcneHne 6MHOMUanbHoOro koadduumeHTa

long binomial_coefficient(int n, int k) {

int i, j; /* counters */
long be[MAXN+1] [MAXN+1]; /* binomial coefficient table */

for (i = 0; i <= n; i++) {
bec[i][0] = 1;
}

for (j = 0; J <=mn; j++) {
bel[j10j] = 1;
}

for (i = 2; i <= n; i++) {
for (j = 1; j < i; j++) {
belil [j]1 = beli-1]1[j-11 + beli-1]1[j];
}
}

return(bc[nl [k]);
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JNnctuhr 10.6. BbluMcneHme CTOMMOCTU pefakKTUPOBaHUS METOAOM pPeEKypcUmn

#define MATCH 0 /* enumerated type symbol for match */
#define INSERT 1 /* enumerated type symbol for insert */
#define DELETE 2 /* enumerated type symbol for delete */

int string_compare_r(char *s, char *t, int i, int j) {
int k; /* counter */
int opt[3]; /% cost of the three options */
int lowest_cost; /* lowest cost */

if (i == 0) { /% indel is the cost of an insertion or deletion */
return(j * indel(' '));
}
if (5 == 0) {
return(i * indel(' '));
}
/% match is the cost of a match/substitution */
opt[MATCH] = string_compare_r(s,t,i-1,j-1) + match(s[i],t[j]);
opt [INSERT] = string_compare_r(s,t,i,j-1) + indel(t[jl);

opt [DELETE] = string_compare_r(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];
for (k = INSERT; k <= DELETE; k++) {
if (opt[k] < lowest_cost) {
lowest_cost = opt[k];
}
}

return(lowest_cost);

JluctuHr 10.7. CTpyKTypa Tabnuubl ANA BbIYUCIEHUS CTOMMOCTU peAakTMpoBaHus

typedef struct {

int cost; /* cost of reaching this cell */
int parent; /* parent cell */
} cell;

cell m[MAXLEN+1] [MAXLEN+1]; /* dynamic programming table */
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Nnctuhr 10.8. BbluMcneHne CTOMMOCTU pefakKTUpPOBaHuUs

int string_compare(char *s, char *t, cell m[MAXLEN+1] [MAXLEN+1]) {

int i, j, k; /* counters */
int opt[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {
row_init (i, m);
column_init (i, m);

}

for (i = 1; i < strlen(s); i++) {
for (j = 1; j < strlen(t); j++) {
opt [MATCH] = m[i-1][j-1].cost + match(s[il, t[j1);
opt [INSERT] = m[i][j-1].cost + indel(t[jl);
opt [DELETE] = m[i-1] [j].cost + indel(s[i]);

m[i] [j].cost = opt[MATCH];
m[i] [j] .parent = MATCH;
for (k = INSERT; k <= DELETE; k++) {
if (optl[k] < m[i]l[j].cost) {
m[i] [j].cost = opt[k];
m[i] [j] .parent = k;

}

goal_cell(s, t, &i, &j);
return(m[i] [j] .cost);
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JNuctunr 10.9. BocctaHoBMNEeHMe pellueHUsi B NPSIMOM Mnopsigke

void reconstruct_path(char *s, char *t, int i, int j,
cell m[MAXLEN+1] [MAXLEN+1]) {
if (m[i] [j].parent == -1) {
return;

}

if (m[i] [j].parent == MATCH) {
reconstruct_path(s, t, i-1, j-1, m);
match_out(s, t, i, j);
return;

}

if (m[i][j].parent == INSERT) {
reconstruct_path(s, t, i, j-1, m);
insert_out(t, j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s, t, i-1, j, m);
delete_out(s, i);
return;

Nuctuhr 10.10. Mpoueaypbl MHALMANM3aLMmu CTPOK U CTONGL OB Tabnuubl

row_init(int i) column_init(int i)
{ {
m[0] [i] .cost = i; m[i] [0] .cost = i;
if (i>0) if (i>0)
m[0] [i] .parent = INSERT; m[i] [0] .parent = DELETE;
else else
m[0] [i] .parent = -1; m[i] [0] .parent = -1;
i3 }

JNuctrrr 10.11. DyHKLMN CTOMMOCTHU

int match(char c, char d) int indel (char c)
{ {

if (¢ == d) return(0); return(l);

else return(l); }
¥

NnctuHr 10.12. ®yHKUMA onpeaeneHns MecToHaxoXaeHus LeneBon a4enku

void goal_cell(char *s, char *t, int *i, int *j) {
*i = strlen(s) - 1;
*#j = strlen(t) - 1;
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Nnctuhr 10.13. ®yHKUMMN TPACCUPOBKU peLUEHUSA

insert_out(char *t, int j) match_out (char *s, char *t,

{ int i, int j)
printf ("I"); {

} if (s[i]l==t[j]) printf("M");

else printf("sS");

delete_out(char *s, int i) ks

{
printf("D");

}

Nuctuhr 10.14. MogucbmumnpoBaHHble hyHKLMN AN NOUCKa HETOYHO COBNaAarLNX CTPOK

void row_init(int i, cell m[MAXLEN+1] [MAXLEN+1]) {

m[0][i].cost = O; /* NOTE CHANGE */
m[0] [i] .parent = -1; /* NOTE CHANGE */
}
void goal_cell(char *s, char *t, int *i, int *j) {
int k; /* counter */
*i = strlen(s) - 1;
*j:O;
for (k = 1; k < strlen(t); k++) {
if (m[#*i] [k].cost < m[*i] [*#j].cost) {
*¥j = k;
}
}
¥

Nnctuhr 10.15. MogudmumpoBaHHasa hyHKUUA CTOMMOCTU cOBNagaeHUn

int match(char ¢, char d) {
if (¢ ==4d) {
return(0);
}
return(MAXLEN) ;
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Iuctunr 10.16. Anroputm Ans onpeaeneHns BO3MOXHOCTU NONyYeHUsi CyMMbl k

bool sum[MAXN+1] [MAXSUM+1]; /* table of realizable sums */
int parent[MAXN+1] [MAXSUM+1];  /* table of parent pointers */

bool subset_sum(int s[], int n, int k) {
int i, j; /* counters */

sum[0] [0] = true;
parent [0] [0] = NIL;

for (i = 1; i <= k; i++) {
sum[0] [i] = false;
parent [0] [i] = NIL;

}

for (i = 1; i <= n; i++) { /* build table */
for (j = 0; j <= k; j++) {
sum[i] [j] = sum[i-1][j];
parent [i] [j] = NIL;
if ((j >= s[i-1]1) && (sum[i-1] [j-s[i-1]1]==true)) {

sum[i] [j] = true;
parent[i] [j1 = j-s[i-1];

¥

return(sum[n] [k]);

JNuctrHr 10.17. NMouck noaxoAsLLero poanUTeNbLCKOro afieMeHTa

void report_subset(int n, int k) {
if (k == 0) {
return;

}

if (parent[n] [k] == NIL) {
report_subset(n-1,k);

¥
else {
report_subset(n-1,parent[n] [k]);
printf (" %d ",k-parent[n] [k]);
¥
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NnctuHr 10.18. Peanu3aumsa anroputMma pelueHus 3agayv NIMHeNHOro pasbueHus

void partition(int s[], int n, int k) {

int p[MAXN+1]; /* prefiz sums array */
int m[MAXN+1] [MAXK+1]; /* DP table for values */
int d[MAXN+1] [MAXK+1]; /* DP table for dividers */
int cost; /* test split cost */
int 1i,j,x; /* counters */
plol = 0; /* construct prefic sums */
for (i = 1; i <= mn; i++) {
plil = pli-1] + s[il;
}
for (i = 1; i <= n; i++) {
m[i][1] = p[il; /% initialize boundaries */
}

for (j = 1; j <= k; j++) {
m[11[j] = s[1];

}

for (i = 2; i <= n; i++) { /* evaluate main recurrence */
for (j = 2; j <= k; j++) {
m[il[j] = MAXINT;
for (x = 1; x <= (i-1); x++) {
cost = max(m[x] [j-1], p[il-p[x]1);
if (m[i]1[j] > cost) {
m[i] [j] = cost;
dlil[j] = x;

}
}

reconstruct_partition(s, d, n, k); /* print book partition */
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JNnctuur 10.19. PekypcuBHas npoueaypa BOCCTaHOBEHUS peLleHUs

void reconstruct_partition(int s[],int A[MAXN+1] [MAXK+1], int n, int k) {
if (k == 1) {
print_books(s, 1, n);
} else {
reconstruct_partition(s, 4, d[n][k], k-1);
print_books(s, d[n] [k]+1, n);

void print_books(int s[], int start, int end) {
int i; /* counter */

printf ("\{");

for (i = start; i <= end; i++) {
printf (" %d ", s[il);

}

printf("}\n");

NnctuHr 12.4. NMpouepypa Npou3BoNLHOro BbiGopa peLueHni

void random_sampling(tsp_instance *t, int nsamples, tsp_solution *s) {

tsp_solution s_now; /* current tsp solution */
double best_cost; /* best cost so far */
double cost_now; /* current cost */

int i; /* counter */

initialize_solution(t->n, &s_now);
best_cost = solution_cost(&s_now, t);
copy_solution(%s_now, s);

for (i = 1; i <= nsamples; i++) {
random_solution(&s_now) ;
cost_now = solution_cost(&s_now, t);

if (cost_now < best_cost) {
best_cost = cost_now;
copy_solution(&s_now, s);

}

solution_count_update(&s_now, t);
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TNuctuur 12.6. NMpoueaypa BOCXOXAEHUA MO BbINYKION NOBEPXHOCTU

void hill_climbing(tsp_instance *t, tsp_solution *s) {

double cost; /* best cost so far */

double delta; /* swap cost */

int i, j; /* counters */

bool stuck; /% did I get a better solution? */

initialize_solution(t->n, s);
random_solution(s);
cost = solution_cost(s, t);

do {
stuck = true;
for (i = 1; i < t->n; i++) {
for (j =1+ 1; j <= t->n; j++) {
delta = transition(s, t, i, j);
if (delta < 0) {
stuck = false;
cost = cost + delta;
} else {
transition(s, t, j, i);
¥
solution_count_update(s, t);
¥
}
} while (stuck);
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JlnctuHr 12.8. Peanusauusa Metoga UMUTALUM OTXKUra

void anneal (tsp_instance #t, tsp_solution #s) {

int x, ¥; S*
int i, j; Vi
bool accept_win, accept_loss; Vi
double temperature; /¥
double current_value; Ve
double start_value; Vi
double delta; /*

double exponent;
temperature = INITIAL

initialize_solution(t

Vs

_TEMPERATURE;

->n, 8);

pair of items to swap */

counters */

conditions to accept iransiltion +/
the current system temp */

value of current state %/

value at start of loop #/

value after swap */

exponent for energy funct */

current_value = solution_cost(s, t);

for (i = 1; i <= COOLING_STEPS; i++) {
temperature #*= COOLING_FRACTION;

start_value = current_value;

for (j = 1; j <= STEPS_PER_TEMP; j++) {
/* pick indices of elements to swap */
x = random_int(l, t->n);
y = random_int(1, t->n);

delta = transition(s, t, %, ¥);

accept_win =

(delta < 0);

/% did swap reduce cost? ¥/

exponent = (-delta / curremt_value) / (K * temperature);
(exp(exponent) > random_float(0,1));

accept_loss =

if (accept_win || accept_loss) {

current_value += delta;

} else {

transition(s, t, x, y);:

}

/* reverse transition */

solutien_count_update(s, t);

}

if (current_value < start_value) { /* rerun at this temp #/
temperature /= COOLING_FRACTION;

}

‘ Nucturr 17.1. Anroputm TacoBaHusa duwepa — Meiitca ‘

for i =1 to n do afi] = 4

for i = 1 to n — 1 do swap[a[i], a[Random][z, n]]];

‘ NucTurr 17.2. Anroputm TacoBaHua duwepa — Melitca (BapnaHT) ‘

for i =1 to n do afi] =4

for i = 1 to n — 1 do swapla[i], a[Random[1, n]]];
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