JNucTtuir 1.1. Peanu3auus anropytma COpTUPOBKN BCTaBKaMu

void insertion_sort(item_type s[], int n) {I[
int i, j; /% counters */

for (i = 1; i < n; i++) {
=1
while ((j > 0) && (s[j] < slj - 11)) {
swap(&s[jl, &s[j - 11);
i=3-5

NnctuHr 2.1. Peanusaums anroputMa COpTUPOBKU METOAOM BbiGopa Ha si3bike C

void selection_sort(item_type s[], int n) {
int i, j; /* counters */
int min; /* dndex of minimum */

for (i = 0; i < n; i++) {
min = i;
for (j =i+ 1; j <m; j++) {
if (s[j] < s[min]) {
min = j;
}
}
swap(&s[i], &s[min]);

JIncTUHr 2.2. BHyTpeHHMe LMKIbl anroputMma COpTUPOBKM BCTaBKaMu Ha A3bike C

for (i = 1; i < n; i++) {
j=1;
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &s[j - 11);
j=3%5

2 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

NucTtnHr 2.3. Peanusauus anropytma nomMcka CTpoKu B TeKCTe

int findmatch(char #*p, char *t) {

int i, j; /* counters */

int plen, tlen; /* string lengths */
plen = strlen(p);

tlen = strlen(t);

for (i = 0; i <= (tlen-plen); i =i + 1) {

j=0;

while ((j < plem) && (t[i + j1 == p[j1)) {
j=J+1

}

if (j == plen) {
return(i); /* location of the first match */
¥
+

return(-1); /* there is no match */

JIucTrHr 2.4. YMHOXeHHne MmaTtpuy,

for (i = 1; i <= a->rows; i++) {
for (j = 1; j <= b->columns; j++) {
c—>m[i] [j1 = 0;
for (k = 1; k <= b->rows; k++) {
c->m[i] [j] += a->m[i] [k] * b->m[k] [j1;
T

Nnctur 3.1. O6bABNEHNE CTPYKTYpPbl CBA3HOrO CNucKa

typedef struct list {

item_type item; /* data item */
struct list *next; /* point to successor */
} list;

JNnctuHr 3.2. PekypcMBHbIN NOUCK 3N1eMeHTa B CBA3SHOM crniucke

list #*search_list(list *1, item_type x) {
if (1 == NULL) {
return(NULL) ;
Iy

if (1->item == x) {
return(l);
} else {
return(search_list(l->next, x));

}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

INucTturr 3.3. BctaBka anemMeHTa B oAHOHaNpaBneHHbIA CBA3HbIA CMUCOK

void insert_list(list #**1, item_type x) {
list #*p; /* temporary pointer */

p = malloc(sizeof (1list));
p->item = x;

p->next = *1;

*1 = p;

Nuctuir 3.4. Mouck ykasatensi Ha aNeMeHT, NpeALwecTBYOLWWIA yaansaemomy

list *item_ahead(list *1, list *x) {
if ((1 == NULL) || (l1->next == NULL)) {
return (NULL) ;
}

if ((1->next) == x) {
return(l);
} else {
return(item_ahead(1->next, x));

¥

JluctuHr 3.5. YoaneHume aneMeHTa CBA3HOro cnucka

void delete_list(list **1, list #*x) {

list #*p; /* item pointer */
list #pred; /* predecessor pointer */
p = *1;

pred = item_ahead(*1, *x);

if (pred == NULL) { /* splice out of list */
*1 = p->next;

} else {
pred->next = (*x)->next;

+

free(*x); /* free memory used by node */

Nuctur 3.6. O6bABNEHNe TMNa ANA CTPYKTYpPbI AepeBa

typedef struct tree {

item_type item; /¥ data item */

struct tree *parent; /* pointer to parent */
struct tree *left; /* pointer to left child */
struct tree *right; /* pointer to right child */

} tree;

4 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

NucTtnir 3.7. AnropwrM PeKypCUBHOIO NOMCKa Npou3BOJyiIbHOro 3yieMeHTa B ABOUYHOM gepeBe

tree *search_tree(tree x1, item_type x) {
if (1 == NULL) {
return (NULL) ;
T

if (1->item == x) {
return(l);

}

if (x < 1->item) {
return(search_tree(l->left, x));
} else {
return(search_tree(l->right, x));

I

NucTtur 3.8. Monck HauMmeHbLLEro afieMeHTa B ABOMYHOM fepeBe

tree *find_minimum(tree *t) {
tree *min; /* pointer to minimum */

if (¢ == NULL) {
return (NULL) ;
}

min = t;

while (min->left != NULL) {
min = min->left;

+

return (min) ;

Nuctur 3.9. PekypcUBHbIN anroputM CUMMETPUYHOro o6xoaa ABOMYHOIO AepeBa

void traverse_tree(tree *1) {
if (1 !'= NULL) {
traverse_tree(l->left);
process_item(l->item);
traverse_tree(l->right);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

Iuctunr 3.10. BectaBka y3na B ABOMYHOE fiepeBO Noucka

void insert_tree(tree **1, item_type X, tree *parent) {
tree *p; /* temporary pointer */

if (*1 == NULL) {
p = malloc(sizeof(tree));
p->item = x;
p->left = p->right = NULL;
p->parent = parent;
*]1 = P
return;

}

if (x < (*¥1)->item) {
insert_tree(&((x1)->left), x, *1);
} else {
insert_tree(&((*1)->right), x, *1);
H

Kop 4.1. ®PyHKUMA COPTUPOBKMN gsort

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (xcompare) (const void #, const void *));

NucTtunr 4.1. Peanusauusa ¢pyHKLUMN cpaBHEHUA

int intcompare(int *i, int *j)

{
if (*i > *j) return (1);
if (*i < *j) return (-1);
return (0);

}

‘ Kop 4.2. Bbi3oB thyHKLUN COPTUPOBKMU

gsort(a, n, sizeof(int), intcompare);

‘ Kop 4.3. CTpykTypa AaHHbIX nupaMuabl

typedef struct {

item_type q[PQ_SIZE+1]; /% body of queue */

int n; /* number of queue elements */
} priority_queue;

6 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INuctuir 4.2. Kog ansa pa6otbl ¢ nupamnaon

int pgq_parent(int n) {
if (o == 1) {
return(-1);
}
return((int) n/2); /¥ implicitly take floor(n/2) */

int pq_young_child(int n) {
return(2 * n);

}

INuctuir 4.3. BctaBka anemeHTa B nupamugy

void pq_insert(priority_queue *q, item_type x) {
if (g->n >= PQ_SIZE) {
printf("Warning: priority queue overflow! \n");
} else {
g->n = (g->n) + 1;
g->qlg->n] = x;
bubble_up(q, g->n);

void bubble_up(priority_queue *q, int p) {
if (pg_parent(p) == -1) {
return; /* at root of heap, no parent */

¥

if (q->qlpq_parent(p)] > q->qlp]) {
pq_swap(q, p, pq_parent(p));
bubble_up(q, pg_parent(p));

Nuctuir 4.4. CosgaHme nMpamuabl NOBTOPAKOLWMMUCA BCTaBKaMmn

void pg_init(priority_queue *q) {
q->n = 0;
}

void make_heap(priority_queue *q, item_type s[], int n) {
int i; /* counter */

pa-init(q);

for (i = 0; i < m; i++) {
pq-insert(q, s[il);

h

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

JlucTunHr 4.5. YpaneHne HauMeHbLUero afnieMmeHTa nunpamuabl

item_type extract_min(priority_queue *q) {
int min = -1; /* minimum value */

if (g-—>n <= 0) {

printf ("Warning: empty priority queue.\n");
} else {

min = g->q[1];

q->q[1] = gq->qlq->nl;
gq->n = g->n - 1;
bubble_down(q, 1);

T

return(min) ;

void bubble_down(priority_queue *q, int p) {
int c; /* child index */
int i; /* counter */
int min_index; /* index of lightest child */

¢ = pq_young_child(p);
min_index = p;

for (i = 0; i <= 1; i++) {

if ((c + i) <= gq->n) {
if (g->q[min_index] > g->qlc + i]) {
min_index = ¢ + 1i;

}
}
if (min_index '= p) {

pq_swap(q, p, min_index);
bubble_down(q, min_index);

NnctuHr 4.6. Anroput™m nupamuaanbHOW COPTUPOBKMU

void heapsort_(item_type s[], int n) {
int i; /* counters */
priority_queue q; /* heap for heapsort */

make_heap(&q, s, n);
for (i = 0; i < n; i++) {

s[i] = extract_min(&q);

}

8 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

NnctuHr 4.7. Anroputm 6bICTPOro co3aaHusi nMpamMmuabl

void make_heap_fast(priority_queue *q, item_type s[], int n) {

int i; /* counter */
q->n = n;
for (i = 0; i < mn; i++) {

q->qli + 1] = s[il;

}

for (i = g—>n/2; i >=1; i--) {
bubble_down(q, 1);
}

INnctuHr 4.8. CpaBHeHue k-ro anemMeHTa ¢ YNCNOM X

int heap_compare(priority_queue *q, int i, int count, int x) {
if ((count <= 0) || (i > g->n)) {
return(count) ;

}

if (g->q[i] < x) {
count = heap_compare(q, pq_young child(i), count-1, x);
count = heap_compare(q, pq_young_child(i)+1, count, x);

}

return(count);

INnctur 4.9. CoptpoBKa BCTaBKaMm

for (i =1; i < m; i++) {
=i
while ((j > 0) && (s[j] < s[j - 11)) {
swap(&s[jl, &s[j - 11);
=71

NucTtunr 4.10. Kop peanusauuu anropytMa COpTUPOBKM CINUSIHUEM

void merge_sort(item_type s[l, int low, int high) {
int middle; /* index of middle element */

if (low < high) {
middle = (low + high) / 2;
merge_sort(s, low, middle);
merge_sort(s, middle + 1, high);

merge(s, low, middle, high);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

INnctuir 4.11. NMpouepypa cnUAHUA MaccMBOB

void merge(item_type s[], int low, int middle, int high) {
int i; /% counter */
queue bufferi, buffer2; /+ buffers to hold elements for merging */

init_queue (&bufferi);
init_queue(&buffer2);

for (i = low; i <= middle; i++) enqueue(&bufferi, s[i]);
for (i = middle + 1; i <= high; i++) enqueue(&buffer2, s[i]);
i= low;

while (! (empty_queue(&bufferl) || empty_queue(&buffer2))) {
if (headq(&bufferl) <= headq(&buffer2)) {
s[i++] = dequeue(&bufferil);
} else {
s[i++] = dequeue (¥buffer2);
}
Iy

while (!empty_queue(&bufferi)) {
s[i++] = dequeue(&bufferi);
T

while (!empty_queue(&buffer2)) {
s[i++] = dequeue(&buffer2);
T

Nuctnir 4.12. Kog anroputma 6bICTPOMA COPTUPOBKMU

void quicksort(item_type s[], int 1, int h) {
int p; /* index of partition */

if (L <h) {
p = partition(s, 1, h);
quicksort(s, 1, p - 1);
quicksort(s, p + 1, h);

10 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

Nnctuir 4.13. MNMpouepypa pa3dbreHnss MaccuBa Ha YacTn

int partition(item_type s[], int 1, int h) {
int i; /% counter */
int p; /* pivot element index */
int firsthigh; /* divider position for pivot element */

p = h; /* select last element as pivot */
firsthigh = 1;
for (i = 1; i < h; i++) {
if (s[il < =s[pD) {
swap(&s[i], &s[firsthigh]);
firsthigh++;
}
¥
swap(&s[p]l, &s[firsthigh]);

return(firsthigh) ;

NucTturr 5.1. Peanusauus anropytma 4BOMYHOrO Noucka

int binary_search(item_type s[], item_type key, int low, int high) {
int middle; /* index of middle element */

if (low > high) {
return (-1); /* key not found */
}

middle = (low + high) / 2;

if (s[middle] == key) {
return(middle);

)

if (s[middle] > key) {

return(binary_search(s, key, low, middle - 1));
} else {

return(binary_search(s, key, middle + 1, high));
}

Kop 5.1. N'paHuubl uuknoB

for (i = 0; i < n+m-1; i++) {

for (j = max(0,i-(n-1)); j <= min(m-1,1); j++) {
c[i] = c[i] + a[j]l * b[i-j];

}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

11

Nnctur 7.1. Peanusauus rpadoB NnocpeacTBOM CMIMCKOB CMEXKHOCTHU

#define MAXV 100 /% mazimum number of vertices */

typedef struct edgenode {

int y; /* adjacency info */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in Llist */

} edgenocde;

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
int directed;
} graph;

/¥
/¥
/¥
/*
/¥

adjacency info */

outdegree of each wvertex */
number of wvertices in the graph */
number of edges in the graph */

is the graph directed? */

JlucTuHr 7.2. ®opmar rpacpa

void initialize_graph(graph *g, bool directed) {

int 1i; /* counter */

g->nvertices = 0;
g->nedges = 0;
g->directed = directed;

for (i = 1; i <= MAXV; i++) {

g->degree[i] = 0;
}

for (i = 1; i <= MAXV; i++) {

g->edges[i] = NULL;
}

NucTtuHr 7.3. CuntbiBaHme rpada

void read_graph(graph *g, bool directed) {

int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (z,y) */

initialize_graph(g, directed);

scanf ("}d %d", &(g->nvertices), &m);

for (i = 1; i <= m; i++) {
scanf ("}d %d", &x, &y);

insert_edge(g, %, y, directed);

12

JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INucTtuHr 7.4. BctaBka pebpa

void insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */
p = malloc(sizeof (edgenode)) ; /* allocate edgenode storage */

p—>weight = 0;

Py = Vs
p->next = g->edges[x];

g—>edges[x] = p; /* insert at head of list */
g->degree [x] ++;

if (!directed) {

insert_edge(g, y, x, true);
} else {

g->nedges++;

}

INucTtuHr 7.5. BoiBopg rpacha Ha akpaH

void print_graph(graph *g) {

int i; /* counter */
edgenode *p; /* temporary pointer */

for (i = 1; i <= g->nvertices; i++) {
printf ("%d: ", i);
P = g>edges[il];
while (p != NULL) {
printf (" %d", p->y);
P = p~—>next;
}
printf ("\n");

Koa 7.1. ByneBbl nepemeHHble ANsA XxpaHeHUs nHOpMaLUmM O KaXXaowu BepLunHe rpadcda

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent [MAXV+1]; /* discovery relation */

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 13

JluctrHr 7.8. UHMumanusaumsa BepLIMH

void initialize_search(graph *g) {
int i; /* counter */

time = 0O;

for (i = 0; i <= g->nvertices; i++) {
processed[i] = false;
discovered[i] = false;
parent[i] = -1;

Nuctunr 7.9. O6xopn rpacda B LWNPUHY

void bfs(graph *g, int start) {

queue q; /* queue of wvertices to visit */
int v; /* current vertex */

int y; /* successor wvertex */

edgenode *p; /* temporary pointer */

init_queue(&q);
enqueue (&q, start);
discovered[start] = true;

while (!empty_queue(&q)) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
P = g->edges([v];
while (p != NULL) {
Yy = P2y
if ((!processed[y]) || g->directed) {
process_edge(v, y);
}
if (ldiscovered[y]) {
enqueue (&q,y) ;
discovered[y] = true;
parent[y] = v;

}
P = p—>next;
}

process_vertex_late(v);

14 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNnctunr 7.10. ®yHKUMA process_vertex late ()

void process_vertex_late(int v) {

}

Nnctuir 7.11. ®dyHkumum process_vertex_early() u process_edge()

void process_vertex_early(int v) {
printf ("processed vertex %d\n", v);

}

void process_edge(int x, int y) {
printf ("processed edge (%d,%d)\n", x, y);
¥

Jlnctunr 7.12. ®yHKumA process_edge () AnA noacyera KonvyecTsa pebep

void process_edge(int x, int y) {
nedges = nedges + 1;

}

Nuctnhr 7.13. U3MeHeHne HanpaBneHUs NyTU NOCPeACTBOM peKypcuu

void find_path(int start, int end, int parents[]) {

if ((start == end) || (end == -1)) {
printf ("\njd", start);
} else {

find_path(start, parents[end], parents);
printf (" %d", end);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

15

INnctuir 7.14. NMpouepypa noncka KOMNOHEHTOB CBA3HOCTU

void connected_components(graph *g) {

int c; /* component number */
int 1i; /* counter */

initialize_search(g);

c = 0;
for (1 = 1; i <= g->nvertices; i++) {
if (!discovered[i]) {
c=c+ 1;
printf ("Component %d:", c);
bfs(g, 1i);
printf("\n");

}
}
T
void process_vertex_early(int v) { /* vertex to process */
printf (" %d", v);
}

void process_edge(int x, int y) {

}

16 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INuctunr 7.15. Mpouepypa packpacku rpacdoB ABYMS LiBeTamMKn

void twocolor(graph =g) {
int 1; /¥ counter %/

for (i = 1; i <= (g->nvertices); i++) {
color[i] = UNCOLORED;
1

bipartite = true;
initialize_search(g);

for (i = 1; i <= (g->nvertices); i++) {
if (ldiscovered[i]) {
color[i] = WHITE;
bis(g, 1i);

void process_edge(int x, int y) {
if (color[x] == colorlyl) {
bipartite = false;
printf ("Warning: not bipartite, due to (%d,%d)\n", x, y);
1

color[y] = complement(color[x]);

int complement(int color) {
if (color == WHITE) {
return (BLACK) ;
1

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 17

Iuctunr 7.17. O6xop rpaca B rnyouHy

void dfs(graph *g, int v) {
edgenode *p; /* temporary pointer ¥/
int y; /* successor vertex */

if (finished) {

return; /* allow for search termination */
}
discovered[v] = true;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);

p = g—>edges[v];
while (p != NULL) {
¥y =Py
if (!discovered[yl) {
parent[y] = v;
process_edge(v, y);
dfs(g, y);
} else if (((!processed[yl) && (paremt([v] != y)) || (g->directed)) {
process_edge(v, y);

}

if (finished) {
return;

}

P = p—>next;

}

process_vertex_late(v);
time = time + 1;
exit_time[v] = time;
processed[v] = true;

JInctuHr 7.18. NMouck unkna

void process_edge(int x, int y) {
if (parent[y] !'= x) { /* found back edge! */
printf ("Cycle from %d to ¥d:", y, x);
find_path(y, x, parent);
finished = true;

NucTturHr 7.19. UHMumanmsaumsa maccmBa [OCTMXKUMbIX NpeALecTBEHHUKOB

int reachable_ancestor[MAXV+1]; /* earliest reachable ancestor of v %/
int tree_out_degree[MAXV+1]; /% DFS tree outdegree of v +/

void process_vertex_early(int v) {
reachable_ancestor[v] = v;

¥

18 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNucTtuHr 7.20. OnpeneneHme Bo3pacTa nNpepLecTBEHHUKOB

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == TREE) {
tree_out_degree[x] = tree_out_degree[x] + 1;
}

if ((class == BACK) && (parent([x] != y)) {
if (entry_time[y] < entry_time[reachable_ancestor[x]]) {
reachable_ancestor[x] = y;

}

NuctuHr 7.21. OnpegeneHne Tuna wapHupa

void process_vertex_late(int v) {

bool root; /* is parent[v] the root of the DFS tree? %/
int time_v; /* earliest reachable time for v */

int time_parent; /% earliest reachable time for parent[u] */
if (parent[v] == -1) { /¥ test if v 1is the root */

if (tree_out_degreel[v] > 1) {
printf ("root articulation vertex: %d \n",v);
}
return;
}

root = (parent[parent[v]] == -1); /* is parent[v] the root? ¥/
if ('root) {

if (reachable_ancestor[v] == parent[v]) {
printf("parent articulation vertex: %d \n", parent[vl);

}
if (reachable_ancestor([v] == v) {
printf ("bridge articulation vertex: %d \n",parent[v]);
if (tree_out_degreelv] > 0) { /* 15 v is not a leaf? */
printf("bridge articulation vertex: %d \n", v);
}
I

}

time_v = entry_time[reachable_ancestor[v]];
time_parent = entry_time[reachable_ancestor [parent[v]]];

if (time_v < time_parent) {
reachable_ancestor [parent [v]] = reachable_ancestor([v];

}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 19

INucTtuHr 7.22. OnpegeneHne Tuna pebpa

int edge_classification(int x, int y) {
if (parent[y] == x) {
return(TREE) ;
}

if (discovered[y] && !processed[yl) {
return(BACK) ;
}

if (processed[y] && (entry_timel[yl>entry_time[x])) {
return (FORWARD) ;
}

if (processed[y] && (entry_timel[yl<entry_timel[x])) {
return(CROSS) ;

¥

printf ("Warning: self loop (%d,%d)\n", x, y);

return -1;

NucTturHr 7.23. Tononornyeckass COpTUpPoBKa

void process_vertex_late(int v) {
push(&sorted, v);
}

void process_edge(int x, int y) {
int class; /* edge class */

class = edge_classification(x, y);

if (class == BACK) {
printf ("Warning: directed cycle found, not a DAG\n");
}

void topsort(graph *g) {
int i; /¥ counter */

init_stack(&sorted);

for (i = 1; i <= g->nvertices; i++) {
if (ldiscovered[i]) {
dfs(g, i);
}

¥
print_stack(&sorted); /* report topological order */

20 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNucTturHr 7.24. TpaHcnoHMpoBaHue rpaca

graph *transpose(graph *g) {
graph *gt; /* transpose of graph g */
int x; /* counter */
edgenode *p; /¥ temporary pointer */

gt = (graph *) malloc(sizeof (graph));
initialize_graph(gt, true); /* initialize directed graph */
gt->nvertices = g->nvertices;

for (x = 1; x <= g->nvertices; x++) {
p = g->edges[x];
while (p != NULL) {
insert_edge(gt, p->y, x, true);
P = p—>next;

}

return(gt) ;

JIucTrHr 7.25. Anroputm pasnoxeHus rpada Ha CUINbHO CBA3HbIE KOMMOHEHTbI

void strong_components(graph *g) {

graph *gt; /* transpose of graph g */
int i; /* counter */
int v; /* verter in component */

init_stack(&dfslorder);
initialize_search(g);
for (i = 1; i <= (g->nvertices); i++) {
if ('discovered[i]) {
dfs(g, i);
*
}

gt = transpose(g);
initialize_search(gt);

components_found = O;
while (!empty_stack(Zdfslorder)) {
v = pop(&dfslorder);
if (!'discovered[v]) {
components_found ++;
printf ("Component %d:", components_found);
dfs2(gt, v);
printf ("\n");

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

21

Kopn 7.2. YueT pecypcoB B 6€CKOHTYPHbIX OPUEHTUPOBaHHbIX rpadax

void process_vertex_late(int v) {

push(&dfslorder,v);
}

Kop 7.3. OnpeaeneHne CUNIbHO CBAABHOIO KOMNOHEHTa B TPAaHCMOHMPOBaHHOM rpade

void process_vertex_early2(int v) {

printf (" %d", v);
T

INuctuHr 8.1. OnpepeneHne CTPyKTypbl CNMCKA CMEXHOCTHU

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
int directed;
} graph;

/* adjacency info */

/* outdegree of each vertex */

/* number of vertices in the graph */
/* number of edges 4n the graph */
/* is the graph directed? */

INuctuir 8.2. Ctpyktypa nepemeHHon edgenode

typedef struct edgenode {
int y;
int weight;
struct edgenode *next;
} edgenode;

/* adjacency info */
/* edge weight, if any */
/* next edge in list */

22

JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INucTtunr 8.4. Peanusauusa anroputma lNMpuma

int prim(graph *g, int start) {

int

i; /* counter */

edgenode *p; /* temporary pointer ¥/
bool intree[MAXV+1]; /¥ is the vertex in the tree yet? #/

int
int
int
int
int

for

}

distance [MAXV+1]; /* cost of adding to tree */

v; /* current vertex to process */

Ww; /* candidate next vertex */

dist; /* cheapest cost to enlarge tree */
weight = 0; /* tree weight */

(i = 1; i <= g->nvertices; i++) {

intree[i] = false;

distance[i] = MAXINT;

parent[i] = -1;

distance[start] = 0;

v =

start;

while (!intreelv]) {

}

intreel[v] = true;
if (v != start) {
printf("edge (%d,%d) in tree \n",parent([v],v);
weight = weight + dist;
}
p = g->edges[v];
while (p != NULL) {
v = poy;
if ((distancelw] > p->weight) &% (!intreelw])) {
distance[w] = p->weight;
parent[w] = v;

}
P = p->next;

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if (('intree([i]) && (dist > distance[i])) {
dist = distancel[i];
v =1i;

return(weight);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

INuctunr 8.6. Peanusauusa anroputma Kpyckana

int kruskal(graph *g) {

int i; /% counter */

union_find s; /* union-find data structure */
edge_pair e[MAXV+1]; /* array of edges data structure */

int weight=0; /* cost of the minimum spanning tree */

union_find_init(%s, g->nvertices);

to_edge_array(g, e);
gsort(&e,g->nedges, sizeof (edge_pair), &weight_compare);

for (i = 0; 1 < (g->nedges); i++) {
if (!same_component(&s, e[i]l.x, e[i]l.y)) {
printf("edge (%d,%d) in MST\n", e[i].x, e[il.y);
weight = weight + e[i].weight;
union_sets(&s, el[il.x, e[il.y);

}

return(weight) ;

Jlnctunr 8.7. Onpegenenne CTPYKTYpbl AaHHbIX union find

typedef struct {

int p[SET_SIZE+1]; /* parent element */
int size[SET_SIZE+1]; /* number of elements in subtree i */
int n; /* number of elements in set */

} union_find;

24 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INnctunr 8.8. Peanusaums onepauui union U £ind

void union_find_init(union_find #s, int n) {
int 1i; /¥ counter %/

for (1 = 1; 1 <= n; i++) {
s->p[i] = 1;
g->size[i] = 1;

§->N = n;

int find(union_find #*s, int x) {
if (s->plx] == %) {
return(x);

}
return(find(s, s->plx1));

void union_sets(union_find ==z, int =1, int =2) {

int ri, r2; /% roots of sets #/
rl = find(s, s1);
r2 = find(s, s2);

if (ril == r2) {
return; /# already in same set #/

}

if (s-»sizel[rl] »= s->sizel[r2]) {
s->sizelri] = s->sizel[rl] + s->sizelr2];
s—>plr2] = ri;

} else {
s->sizel[r2] = s->sizelrl] + s->sizelr2];
s->plri] = r2;

}

bool same_component(union_find #*s, int =1, int s2) {
return (find(s, sl1) == find(s, 82));

}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

25

NucTturr 8.10. Peanusauua anroputma [eMKCTpbl

int dijkstra(graph *g, int start) {
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertez in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertex to process */

int w; /% candidate next vertex */

int dist; /* cheapest cost to enlarge tree */
int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {
intree[i] = false;
distance[i] = MAXINT;
parent [i] = -1;

}

distance[start] = 0;
v = start;
while (lintree[v]) {
intree[v] = true;
if (v !'= start) {
printf("edge (%d,%d) in tree \n",parent[v],v);
weight = weight + dist;
¥
p = g>edges[v];
while (p != NULL) {

W = pPY;

if (distancelw] > (distancelv]+p->weight)) { /* CHANGED +/
distance[w] = distance[v]+p->weight; /* CHANGED */
parent[w] = v; /* CHANGED */

}

P = p—>next;

}

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {
if ((!intree[i]) && (dist > distance[i])) {
dist = distancel[i];
v = 1i;

}

return(weight) ;

Nucturr 8.11. OnpegeneHne TMna MaTpyuubl CMEXHOCTHU

typedef struct {
int weight [MAXV+1] [MAXV+1]; /¥ adjacency/weight info */

int nvertices; /* number of wertices in graph */

} adjacency_matrix;

26 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INnctur 8.12. Peanusauus anroputma ®nonpga — Yopuwenna

void floyd(adjacency_matrix *g) {

int i, j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through wvertex k */

for (k = 1; k <= g->nvertices; k++) {
for (i = 1; i <= g->nvertices; i++) {
for (j = 1; j <= g->nvertices; j++) {
through_k = g->weight [i] [k]+g->weight [k][j];
if (through_k < g->weight[i] [j]) {
g->weight[i] [j] = through_k;
}

NuctuHr 8.13. MoaudmumpoBaHHas CTpyKkTypa pebpa

typedef struct {

int v; /* meighboring vertex */
int capacity; /* capacity of edge */
int flow; /* flow through edge */
int residual; /* residual capacity of edge */
struct edgenode *next; /* next edge in list */
} edgenode;

TNnctur 8.14. NMpouepypa noncka onTMManbHOro NoToka

void netflow(flow_graph *g, int source, int sink) {
int volume; /* weight of the augmenting path */

add_residual_edges(g);

initialize_search(g);
bfs(g, source);

volume = path_volume(g, source, sink);

while (volume > 0) {
augment_path(g, source, sink, volume);
initialize_search(g);
bfs(g, source);
volume = path_volume(g, source, sink);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

27

INnctuir 8.15. MNMpoueaypa Ans pasnMyeHUs HacbIWEHHbIX U HeHacbILWeHHbIX pebep

bool valid_edge(edgenode *e) {
return (e->residual > 0);

}

Iucturr 8.16. lo6aBneHve yBennunsarwLmx nyTen B NOToK

int path_volume(flow_graph *g, int start, int emnd) {

edgenode *e; /* edge in question */
if (parent[end] == -1) {

return(0);
¥

e = find_edge(g, parent[end], end);

if (start == parent[end]) {
return(e->residual);
} else {
return(min(path_volume(g, start, parent[end]), e->residual));

}

NucTtudr 8.17. Mogudukauus pedbep

void augment_path(flow_graph *g, int start, int end, int volume) {
edgenode *e; /* edge in question */

if (start == end) {
return;

}
e = find_edge(g, parent[end], end);
e->flow += volume;

e->residual -= volume;

e = find_edge(g, end, parent[end]);
e->residual += volume;

augment_path(g, start, parent[end], volume);

28 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

INucTtuHr 9.2. Peanusauusa anroputma nepebopa c Bo3BpaTtom

void backtrack(int a[], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for nezt position */
int nc; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a, k, input)) {
process_solution(a, k,input);
} else {
k=k+ 1;
construct_candidates(a, k, input, ¢, &nc);
for (i = 0; i < nc; i++) {
alk] = c[il;
make_move(a, k, input);
backtrack(a, k, input);
unmake_move(a, k, input);

if (finished) {
return; /* terminate early */

}

Nuctunr 9.3. Peanusauums 6a3oBbIX npoueayp npoueaypbl backtrack ()

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void construct_candidates(int a[], int k, int n, int c[], int *nc) {
c[0] = true;
c[1] = false;

*nc = 2;

¥

void process_solution(int a[], int k, int input) {
int i; /* counter */

printf ("{");
for (i =1; i <= k; i++) {
if (ali] == true) {
printf (" %d", i);
}
}

printf(" F\n");

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 29

JNucTturr 9.4. Bbi3oB npouenypbl backtrack () Ansi reHEPUPOBaHMA NOAMHOXECTB

void generate_subsets(int n) {
int a[NMAX]; /% solution vector */

backtrack(a, 0, n);

INuctuir 9.5. Mpoueaypa construct candidates () ANA reHepMpoBaHUsA BCeX NepecTaHOBOK

void comnstruct_candidates(int a[], int k, int n, int c[], int *nc) {
int i; /% counter */
bool in_perm[NMAX] ; /* what is now in the permutation? */

for (i = 1; i < NMAX; i++) {
in_perm[i] = false;

}

for (i =1; i < k; i++) {
in_perm[a[il] = true;

}

*nc = 0;
for (1 = 1; i <= n; i++) {
if (lin_perm[i]) {
c[*nc] = i;
¥nc = *nc + 1;

NucTtunr 9.6. NMpoueaypbl reHepupoBaHUs NepecTaHOBOK

void process_solution(int a[], int k, int input) {
int i; /* counter */

for (i = 1; i <= k; i++) {
printf (" %d", alil);

}

printf ("\n");

int is_a_solution(int a[], int k, int n) {
return (k == n);

}

void generate_permutations(int n) {
int a[NMAX]; /* solution wvector */

backtrack(a, 0, n);

30 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

Nnctuur 9.7. CosaaHne CTPYKTYpbI ANA XpaHEHUs BXOAHbIX AaHHbIX
Ana npoueaypbl backtrack

typedef struct {

int s; /* source vertexr */
int t; /* destination vertexr */
graph g; /* graph to find paths in */

} paths_data;

Jlnctunr 9.8. NMpoueaypa construct candidates () AnNA nepeuyncreHuns Bcex nyTen B rpacge

void construct_candidates(int a[l, int k, paths_data *g, int c[],
int *nc) {

int i; /* counters */

bool in_sol [NMAX+1]; /* what's already in the solution? */
edgenode *p; /% temporary pointer */

int last; /* last vertex on current path */

for (i = 1; i <= g->g.nvertices; i++) {
in_sol[i] = false;

for (i = 0; i < k; i++) {
in_sol([a[il] = true;

}

if (k == 1) {
cl0] = g->s; /* always start from vertex s */
*nc = 1;

} else {
*nc = 0;

last = alk-1];
P = g->g.edges[last];
while (p !'= NULL) {
if (lin_sol[p->y 1) {
cl*nc] = p->y;
*nc= #nc + 1,

}
P = p->next;

JucTtunr 9.9. Mpoueaypbl ANs onpeaeneHns peLueHns U ero o6paboTku

int is_a_solution(int a[], int k, paths_data *g) {
return (a[k] == g->t);
}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 31

Nnctuir 9.10. MNMpouepypa Ans noacyeTa KONUMYecTBa OO6HapYKeHHbIX NyTen

void process_solution(int a[], int k, paths_data *input) {
int i; /* counter */

solution_count ++;

printf ("{");

for (i = 1; i <= k; i++) {
printf (" %d",alil);

}

printf (" F\n");

Jluctunr 9.11. OnpepeneHne OCHOBHbIX CTPYKTYP AaHHbIX

#define DIMENSION 9 /* 9%9 board */
#define NCELLS DIMENSION*DIMENSION /* 81 cells in 9-by-9-board */
#define MAXCANDIDATES DIMENSION+1 /* maz digit choices per cell */

bool finished = false;
typedef struct {
int x, y; /* row and column coordinates of square */

} point;

typedef struct {

int m[DIMENSION+1] [DIMENSION+1]; /* board contents */

int freecount; /* open square count */

point move [NCELLS+1]; /* which cells have we filled? */
} boardtype;

JNucTunHr 9.12. FreHepupoBaHMe KaHAWAATOB Ha 3anofIHeHUe KNeTouKu

void construct_candidates(int a[], int k, boardtype *board, int c[],
int #nc) {
int i; /¥ counter */
bool possible[DIMENSION+1]; /* which digits fit in this square */

next_square (& (board->move[k]), board); /* pick square to fill next */
*nc = 0;

if ((board->movel[k].x < 0) && (board->movel[k].y < 0)) {
return; /* error condition, no moves possible */

}

possible_values(board->move[k], board, possible);
for (i = 1; i <= DIMENSION; i++) {
if (possiblel[il) {
c[*nc] = i;
*nc = *nc + 1;

32 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

Jlnctunr 9.13. Mpoueaypbl make move M unmake move

void make_move(int a[], int k, boardtype *board) {
f£ill_square(board->move[k], al[k], board);
}

void unmake_move(int a[], int k, boardtype *board) {
free_square(board->move [k], board);

}

TNuctuur 9.14. NMpoueaypa oTcnexXnBaHUs NyCcTbiX KNeTo4Yek

bool is_a_solution(int a[], int k, boardtype *board) {
steps = steps + 1; /* count steps for results table */

return (board->freecount == 0);

TNuctuhr 9.15. 3aBeplieHne novcka u o6paboTka peweHus

void process_solution(int a[], int k, boardtype #board) {
finished = true;
printf("process solutioni\n");
print_board(board);

Iucturr 9.16. MNonck kaHAMAATOB KpaT4allLero NyTM METOAOM «Iy4LIMA-NepBbIA»

void branch_and_bound (tsp_solution *s, tsp_instance *t) {

int c[MAXCANDIDATES]; /* candidates for mext position */
int nc; /* next position candidate count */
int i; /* counter */

first_solution(&best_solution,t);

best_cost = solution_cost(&best_solution, t);
initialize_solution(s,t);
extend_solution(s,t,1);

pa-init(&q);

pq_insert(&q,s);

while (top_pq(&q).cost < best_cost) {
*s = extract_min(&q);
if (is_a_solution(s, s->n, t)) {
process_solution(s, s->n, t);

}
else {
construct_candidates(s, (s->n)+1, t, c, &nc);
for (i=0; i<mnc; i++) {
extend_solution(s,t,c[i]);
pq_insert (&q,s);
contract_solution(s,t);
}
}

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 33

TNnctuur 9.17. Mpouepypsbl extend_solution u contract_solution

void extend_solution(tsp_solution *s, tsp_instance *t, int v) {
s->n++;
s—>pls->n] = v;
s->cost = partial_solution_lb(s,t);

}

void contract_solution(tsp_solution *s, tsp_instance *t) {
s->n—-—;
s->cost = partial_solution_lb(s,t);

NnctuHr 9.18. BbluncneHne CTOUMOCTM peLleHust

double partial_solution_cost (tsp_solution *s, tsp_instance *t) {
int i; /* counter */
double cost = 0.0; /* cost of solution */

for (i = 1; i < (s->n); i++) {
cost = cost + distance(s, i, 1 + 1, t);

}

return(cost) ;

}

double partial_solution_lb(tsp_solution *s, tsp_instance *t) {
return(partial_solution_cost(s,t) + (t->n - s->n + 1) * minlb);

}

NnctuHr 10.1. PekypcuBHas pyHKUUA ANA BblYMUCIIeHUsA N-ro yucna ®PuboHavum

long fib_r(int n) {
if (n == 0) {
return (0) ;

}
if (n == 1) {
return(1l);

}

return(fib_r(n-1) + fib_r(n-2));

34

JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

NucTtrrr 10.2. BeluncneHme yncen PmboHa4y4m ¢ UCNONb30BaHMEM K3LWMPOBaHUA

#define MAXN 92 /* largest n for which F(n) fits in a long */
#define UNKNOWN -1 /* contents denote an empty cell */
long f[MAXN+1]; /* array for caching fib values */

long fib_c(int n) {
if (f[n] == UNKNOWN) {

f[n] = fib_c(n-1) + fib_c(n-2);

}

return(f[n]);

long fib_c_driver(int n) {

int 1i; /* counter */
f£[0] = 0;

f[1] = 1;

for (i

£[i] = UNKNOWN;

}

return(fib_c(n)) ;

2; i <= mn; i++) {

NuctuHr 10.3. BbluMcneHus ynucna PnboHavyum 6e3 pekypcum

long fib_dp(int n) {
int i;
long f[MAXN+1];

/* counter */
/% array for caching values */

£[0] = 0;

£[1] = 1;

for (i = 2; i <= n; i++) {
£[i] = £[i-1] + £[i-2];

}

return(f[n]);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 35

Nnctuur 10.4. OkoH4YaTenbHasA Bepcusi npoueaypbl BblYMcneHus yncen ®mboHavum

long fib_ultimate(int n)

{

int i; /* counter */
long back2=0, backl=1; /#* last two wvalues of fln] */
long next; /* placeholder for sum */

if (n == 0) return (0);

for (i=2; i<n; i++) {
next = backl+back?2;
back2 = backl;
backl = next;

}

return(backl+back?) ;

NuctnHr 10.5. BbluMcneHne 6MHOMUanbHoOro koadduumeHTa

long binomial_coefficient(int n, int k) {

int i, j; /* counters */
long be[MAXN+1] [MAXN+1]; /* binomial coefficient table */

for (i = 0; i <= n; i++) {
bec[i][0] = 1;
}

for (j = 0; J <=mn; j++) {
bel[j10j] = 1;
}

for (i = 2; i <= n; i++) {
for (j = 1; j < i; j++) {
belil [j]1 = beli-1]1[j-11 + beli-1]1[j];
}
}

return(bc[nl [k]);

36 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNnctuhr 10.6. BbluMcneHme CTOMMOCTU pefakKTUPOBaHUS METOAOM pPeEKypcUmn

#define MATCH 0 /* enumerated type symbol for match */
#define INSERT 1 /* enumerated type symbol for insert */
#define DELETE 2 /* enumerated type symbol for delete */

int string_compare_r(char *s, char *t, int i, int j) {
int k; /* counter */
int opt[3]; /% cost of the three options */
int lowest_cost; /* lowest cost */

if (i == 0) { /% indel is the cost of an insertion or deletion */
return(j * indel(' '));
}
if (5 == 0) {
return(i * indel(' '));
}
/% match is the cost of a match/substitution */
opt[MATCH] = string_compare_r(s,t,i-1,j-1) + match(s[i],t[j]);
opt [INSERT] = string_compare_r(s,t,i,j-1) + indel(t[jl);

opt [DELETE] = string_compare_r(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];
for (k = INSERT; k <= DELETE; k++) {
if (opt[k] < lowest_cost) {
lowest_cost = opt[k];
}
}

return(lowest_cost);

JluctuHr 10.7. CTpyKTypa Tabnuubl ANA BbIYUCIEHUS CTOMMOCTU peAakTMpoBaHus

typedef struct {

int cost; /* cost of reaching this cell */
int parent; /* parent cell */
} cell;

cell m[MAXLEN+1] [MAXLEN+1]; /* dynamic programming table */

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

Nnctuhr 10.8. BbluMcneHne CTOMMOCTU pefakKTUpPOBaHuUs

int string_compare(char *s, char *t, cell m[MAXLEN+1] [MAXLEN+1]) {

int i, j, k; /* counters */
int opt[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {
row_init (i, m);
column_init (i, m);

}

for (i = 1; i < strlen(s); i++) {
for (j = 1; j < strlen(t); j++) {
opt [MATCH] = m[i-1][j-1].cost + match(s[il, t[j1);
opt [INSERT] = m[i][j-1].cost + indel(t[jl);
opt [DELETE] = m[i-1] [j].cost + indel(s[i]);

m[i] [j].cost = opt[MATCH];
m[i] [j] .parent = MATCH;
for (k = INSERT; k <= DELETE; k++) {
if (optl[k] < m[i]l[j].cost) {
m[i] [j].cost = opt[k];
m[i] [j] .parent = k;

}

goal_cell(s, t, &i, &j);
return(m[i] [j] .cost);

38 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNuctunr 10.9. BocctaHoBMNEeHMe pellueHUsi B NPSIMOM Mnopsigke

void reconstruct_path(char *s, char *t, int i, int j,
cell m[MAXLEN+1] [MAXLEN+1]) {
if (m[i] [j].parent == -1) {
return;

}

if (m[i] [j].parent == MATCH) {
reconstruct_path(s, t, i-1, j-1, m);
match_out(s, t, i, j);
return;

}

if (m[i][j].parent == INSERT) {
reconstruct_path(s, t, i, j-1, m);
insert_out(t, j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s, t, i-1, j, m);
delete_out(s, i);
return;

Nuctuhr 10.10. Mpoueaypbl MHALMANM3aLMmu CTPOK U CTONGL OB Tabnuubl

row_init(int i) column_init(int i)
{ {
m[0] [i] .cost = i; m[i] [0] .cost = i;
if (i>0) if (i>0)
m[0] [i] .parent = INSERT; m[i] [0] .parent = DELETE;
else else
m[0] [i] .parent = -1; m[i] [0] .parent = -1;
i3 }

JNuctrrr 10.11. DyHKLMN CTOMMOCTHU

int match(char c, char d) int indel (char c)
{ {

if (¢ == d) return(0); return(l);

else return(l); }
¥

NnctuHr 10.12. ®yHKUMA onpeaeneHns MecToHaxoXaeHus LeneBon a4enku

void goal_cell(char *s, char *t, int *i, int *j) {
*i = strlen(s) - 1;
*#j = strlen(t) - 1;

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 39

Nnctuhr 10.13. ®yHKUMMN TPACCUPOBKU peLUEHUSA

insert_out(char *t, int j) match_out (char *s, char *t,

{ int i, int j)
printf ("I"); {

} if (s[i]l==t[j]) printf("M");

else printf("sS");

delete_out(char *s, int i) ks

{
printf("D");

}

Nuctuhr 10.14. MogucbmumnpoBaHHble hyHKLMN AN NOUCKa HETOYHO COBNaAarLNX CTPOK

void row_init(int i, cell m[MAXLEN+1] [MAXLEN+1]) {

m[0][i].cost = O; /* NOTE CHANGE */
m[0] [i] .parent = -1; /* NOTE CHANGE */
}
void goal_cell(char *s, char *t, int *i, int *j) {
int k; /* counter */
*i = strlen(s) - 1;
*j:O;
for (k = 1; k < strlen(t); k++) {
if (m[#*i] [k].cost < m[*i] [*#j].cost) {
*¥j = k;
}
}
¥

Nnctuhr 10.15. MogudmumpoBaHHasa hyHKUUA CTOMMOCTU cOBNagaeHUn

int match(char ¢, char d) {
if (¢ ==4d) {
return(0);
}
return(MAXLEN) ;

40 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

Iuctunr 10.16. Anroputm Ans onpeaeneHns BO3MOXHOCTU NONyYeHUsi CyMMbl k

bool sum[MAXN+1] [MAXSUM+1]; /* table of realizable sums */
int parent[MAXN+1] [MAXSUM+1]; /* table of parent pointers */

bool subset_sum(int s[], int n, int k) {
int i, j; /* counters */

sum[0] [0] = true;
parent [0] [0] = NIL;

for (i = 1; i <= k; i++) {
sum[0] [i] = false;
parent [0] [i] = NIL;

}

for (i = 1; i <= n; i++) { /* build table */
for (j = 0; j <= k; j++) {
sum[i] [j] = sum[i-1][j];
parent [i] [j] = NIL;
if ((j >= s[i-1]1) && (sum[i-1] [j-s[i-1]1]==true)) {

sum[i] [j] = true;
parent[i] [j1 = j-s[i-1];

¥

return(sum[n] [k]);

JNuctrHr 10.17. NMouck noaxoAsLLero poanUTeNbLCKOro afieMeHTa

void report_subset(int n, int k) {
if (k == 0) {
return;

}

if (parent[n] [k] == NIL) {
report_subset(n-1,k);

¥
else {
report_subset(n-1,parent[n] [k]);
printf (" %d ",k-parent[n] [k]);
¥

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu

NnctuHr 10.18. Peanu3aumsa anroputMma pelueHus 3agayv NIMHeNHOro pasbueHus

void partition(int s[], int n, int k) {

int p[MAXN+1]; /* prefiz sums array */
int m[MAXN+1] [MAXK+1]; /* DP table for values */
int d[MAXN+1] [MAXK+1]; /* DP table for dividers */
int cost; /* test split cost */
int 1i,j,x; /* counters */
plol = 0; /* construct prefic sums */
for (i = 1; i <= mn; i++) {
plil = pli-1] + s[il;
}
for (i = 1; i <= n; i++) {
m[i][1] = p[il; /% initialize boundaries */
}

for (j = 1; j <= k; j++) {
m[11[j] = s[1];

}

for (i = 2; i <= n; i++) { /* evaluate main recurrence */
for (j = 2; j <= k; j++) {
m[il[j] = MAXINT;
for (x = 1; x <= (i-1); x++) {
cost = max(m[x] [j-1], p[il-p[x]1);
if (m[i]1[j] > cost) {
m[i] [j] = cost;
dlil[j] = x;

}
}

reconstruct_partition(s, d, n, k); /* print book partition */

42 JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JNnctuur 10.19. PekypcuBHas npoueaypa BOCCTaHOBEHUS peLleHUs

void reconstruct_partition(int s[],int A[MAXN+1] [MAXK+1], int n, int k) {
if (k == 1) {
print_books(s, 1, n);
} else {
reconstruct_partition(s, 4, d[n][k], k-1);
print_books(s, d[n] [k]+1, n);

void print_books(int s[], int start, int end) {
int i; /* counter */

printf ("\{");

for (i = start; i <= end; i++) {
printf (" %d ", s[il);

}

printf("}\n");

NnctuHr 12.4. NMpouepypa Npou3BoNLHOro BbiGopa peLueHni

void random_sampling(tsp_instance *t, int nsamples, tsp_solution *s) {

tsp_solution s_now; /* current tsp solution */
double best_cost; /* best cost so far */
double cost_now; /* current cost */

int i; /* counter */

initialize_solution(t->n, &s_now);
best_cost = solution_cost(&s_now, t);
copy_solution(%s_now, s);

for (i = 1; i <= nsamples; i++) {
random_solution(&s_now) ;
cost_now = solution_cost(&s_now, t);

if (cost_now < best_cost) {
best_cost = cost_now;
copy_solution(&s_now, s);

}

solution_count_update(&s_now, t);

JlucmuHeau ¢ ugsemmHbiMU 3rieMeHmamu 43

TNuctuur 12.6. NMpoueaypa BOCXOXAEHUA MO BbINYKION NOBEPXHOCTU

void hill_climbing(tsp_instance *t, tsp_solution *s) {

double cost; /* best cost so far */

double delta; /* swap cost */

int i, j; /* counters */

bool stuck; /% did I get a better solution? */

initialize_solution(t->n, s);
random_solution(s);
cost = solution_cost(s, t);

do {
stuck = true;
for (i = 1; i < t->n; i++) {
for (j =1+ 1; j <= t->n; j++) {
delta = transition(s, t, i, j);
if (delta < 0) {
stuck = false;
cost = cost + delta;
} else {
transition(s, t, j, i);
¥
solution_count_update(s, t);
¥
}
} while (stuck);

44

JlucmuHeu ¢ usemHbIMU 3fieMeHmMamu

JlnctuHr 12.8. Peanusauusa Metoga UMUTALUM OTXKUra

void anneal (tsp_instance #t, tsp_solution #s) {

int x, ¥; S*
int i, j; Vi
bool accept_win, accept_loss; Vi
double temperature; /¥
double current_value; Ve
double start_value; Vi
double delta; /*

double exponent;
temperature = INITIAL

initialize_solution(t

Vs

_TEMPERATURE;

->n, 8);

pair of items to swap */

counters */

conditions to accept iransiltion +/
the current system temp */

value of current state %/

value at start of loop #/

value after swap */

exponent for energy funct */

current_value = solution_cost(s, t);

for (i = 1; i <= COOLING_STEPS; i++) {
temperature #*= COOLING_FRACTION;

start_value = current_value;

for (j = 1; j <= STEPS_PER_TEMP; j++) {
/* pick indices of elements to swap */
x = random_int(l, t->n);
y = random_int(1, t->n);

delta = transition(s, t, %, ¥);

accept_win =

(delta < 0);

/% did swap reduce cost? ¥/

exponent = (-delta / curremt_value) / (K * temperature);
(exp(exponent) > random_float(0,1));

accept_loss =

if (accept_win || accept_loss) {

current_value += delta;

} else {

transition(s, t, x, y);:

}

/* reverse transition */

solutien_count_update(s, t);

}

if (current_value < start_value) { /* rerun at this temp #/
temperature /= COOLING_FRACTION;

}

‘ Nucturr 17.1. Anroputm TacoBaHusa duwepa — Meiitca ‘

for i =1 to n do afi] = 4

for i = 1 to n — 1 do swap[a[i], a[Random][z, n]]];

‘ NucTurr 17.2. Anroputm TacoBaHua duwepa — Melitca (BapnaHT) ‘

for i =1 to n do afi] =4

for i = 1 to n — 1 do swapla[i], a[Random[1, n]]];

	Листинг 1.1. Реализация алгоритма сортировки вставками
	Листинг 2.1. Реализация алгоритма сортировки методом выбора на языке С
	Листинг 2.2. Внутренние циклы алгоритма сортировки вставками на языке С
	Листинг 2.3. Реализация алгоритма поиска строки в тексте
	Листинг 2.4. Умножение матриц
	Листинг 3.1. Объявление структуры связного списка
	Листинг 3.2. Рекурсивный поиск элемента в связном списке
	Листинг 3.3. Вставка элемента в однонаправленный связный список
	Листинг 3.4. Поиск указателя на элемент, предшествующий удаляемому
	Листинг 3.5. Удаление элемента связного списка
	Листинг 3.6. Объявление типа для структуры дерева
	Листинг 3.7. Алгоритм рекурсивного поиска произвольного элемента в двоичном дереве
	Листинг 3.8. Поиск наименьшего элемента в двоичном дереве
	Листинг 3.9. Рекурсивный алгоритм симметричного обхода двоичного дерева
	Листинг 3.10. Вставка узла в двоичное дерево поиска
	Код 4.1. Функция сортировки qsort
	Листинг 4.1. Реализация функции сравнения
	Код 4.2. Вызов функции сортировки
	Код 4.3. Структура данных пирамиды
	Листинг 4.2. Код для работы с пирамидой
	Листинг 4.3. Вставка элемента в пирамиду
	Листинг 4.4. Создание пирамиды повторяющимися вставками
	Листинг 4.5. Удаление наименьшего элемента пирамиды
	Листинг 4.6. Алгоритм пирамидальной сортировки
	Листинг 4.7. Алгоритм быстрого создания пирамиды
	Листинг 4.8. Сравнение k-го элемента с числом х
	Листинг 4.9. Сортировка вставками
	Листинг 4.10. Код реализации алгоритма сортировки слиянием
	Листинг 4.11. Процедура слияния массивов
	Листинг 4.12. Код алгоритма быстрой сортировки
	Листинг 4.13. Процедура разбиения массива на части
	Листинг 5.1. Реализация алгоритма двоичного поиска
	Код 5.1. Границы циклов
	Листинг 7.1. Реализация графов посредством списков смежности
	Листинг 7.2. Формат графа
	Листинг 7.3. Считывание графа
	Листинг 7.4. Вставка ребра
	Листинг 7.5. Вывод графа на экран
	Код 7.1. Булевы переменные для хранения информации о каждой вершине графа
	Листинг 7.8. Инициализация вершин
	Листинг 7.9. Обход графа в ширину
	Листинг 7.10. Функция process_vertex_late()
	Листинг 7.11. Функции process_vertex_early() и process_edge()
	Листинг 7.12. Функция process_edge() для подсчета количества ребер
	Листинг 7.13. Изменение направления пути посредством рекурсии
	Листинг 7.14. Процедура поиска компонентов связности
	Листинг 7.15. Процедура раскраски графов двумя цветами
	Листинг 7.17. Обход графа в глубину
	Листинг 7.18. Поиск цикла
	Листинг 7.19. Инициализация массива достижимых предшественников
	Листинг 7.20. Определение возраста предшественников
	Листинг 7.21. Определение типа шарнира
	Листинг 7.22. Определение типа ребра
	Листинг 7.23. Топологическая сортировка
	Листинг 7.24. Транспонирование графа
	Листинг 7.25. Алгоритм разложения графа на сильно связные компоненты
	Код 7.2. Учет ресурсов в бесконтурных ориентированных графах
	Код 7.3. Определение сильно связного компонента в транспонированном графе
	Листинг 8.1. Определение структуры списка смежности
	Листинг 8.2. Структура переменной edgenode
	Листинг 8.4. Реализация алгоритма Прима
	Листинг 8.6. Реализация алгоритма Крускала
	Листинг 8.7. Определение структуры данных union_find
	Листинг 8.8. Реализация операций union и find
	Листинг 8.10. Реализация алгоритма Дейкстры
	Листинг 8.11. Определение типа матрицы смежности
	Листинг 8.12. Реализация алгоритма Флойда — Уоршелла
	Листинг 8.13. Модифицированная структура ребра
	Листинг 8.14. Процедура поиска оптимального потока
	Листинг 8.15. Процедура для различения насыщенных и ненасыщенных ребер
	Листинг 8.16. Добавление увеличивающих путей в поток
	Листинг 8.17. Модификация ребер
	Листинг 9.2. Реализация алгоритма перебора с возвратом
	Листинг 9.3. Реализация базовых процедур процедуры backtrack()
	Листинг 9.4. Вызов процедуры backtrack() для генерирования подмножеств
	Листинг 9.5. Процедура construct_candidates() для генерирования всех перестановок
	Листинг 9.6. Процедуры генерирования перестановок
	Листинг 9.7. Создание структуры для хранения входных данных для процедуры backtrack
	Листинг 9.8. Процедура construct_candidates() для перечисления всех путей в графе
	Листинг 9.9. Процедуры для определения решения и его обработки
	Листинг 9.10. Процедура для подсчета количества обнаруженных путей
	Листинг 9.11. Определение основных структур данных
	Листинг 9.12. Генерирование кандидатов на заполнение клеточки
	Листинг 9.13. Процедуры make_move и unmake_move
	Листинг 9.14. Процедура отслеживания пустых клеточек
	Листинг 9.15. Завершение поиска и обработка решения
	Листинг 9.16. Поиск кандидатов кратчайшего пути методом «лучший-первый»
	Листинг 9.17. Процедуры extend_solution и contract_solution
	Листинг 9.18. Вычисление стоимости решения
	Листинг 10.1. Рекурсивная функция для вычисления n-го числа Фибоначчи
	Листинг 10.2. Вычисление чисел Фибоначчи с использованием кэширования
	Листинг 10.3. Вычисления числа Фибоначчи без рекурсии
	Листинг 10.4. Окончательная версия процедуры вычисления чисел Фибоначчи
	Листинг 10.5. Вычисление биномиального коэффициента
	Листинг 10.6. Вычисление стоимости редактирования методом рекурсии
	Листинг 10.7. Структура таблицы для вычисления стоимости редактирования
	Листинг 10.8. Вычисление стоимости редактирования
	Листинг 10.9. Восстановление решения в прямом порядке
	Листинг 10.10. Процедуры инициализации строк и столбцов таблицы
	Листинг 10.11. Функции стоимости
	Листинг 10.12. Функция определения местонахождения целевой ячейки
	Листинг 10.13. Функции трассировки решения
	Листинг 10.14. Модифицированные функции для поиска неточно совпадающих строк
	Листинг 10.15. Модифицированная функция стоимости совпадений
	Листинг 10.16. Алгоритм для определения возможности получения суммы k
	Листинг 10.17. Поиск подходящего родительского элемента
	Листинг 10.18. Реализация алгоритма решения задачи линейного разбиения
	Листинг 10.19. Рекурсивная процедура восстановления решения
	Листинг 12.4. Процедура произвольного выбора решений
	Листинг 12.6. Процедура восхождения по выпуклой поверхности
	Листинг 12.8. Реализация метода имитации отжига
	Листинг 17.1. Алгоритм тасования Фишера — Йейтса
	Листинг 17.2. Алгоритм тасования Фишера — Йейтса (вариант)

